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I THE INTERACTIONOF RADIO FREQUENCYELECTROMAGNETICFIELDS

• WITH ATMOSPHERICWATERDROPLETS
ANDAPPLICATIONS TO AIRCRAFT ICE PREVENTION

t bylW

m

| Robert John Hansman, Jr.

m¢

ABSTRACT

_ In thls work the physics of advanced microwave anti-icing systems, '
_ which pre-heat impinging supercooled water droplets prior to Impact, Is

studied by means of a computer simulation and is found to be feasible.
- In order to create a physically realistic simulation, theoretical and
_| experimental work was necessary and the results are presented in this "i

-_ thes I s.

The behavior of the absorption cross-section for melting ice particles
• is measured by a resonant cavity technique and Is found to agree with

theoretlcaI predictions. Values of the dielectric parameters of
| supercooled water are measured by a similar technique at ;k - 2.82 cm down

F • to -17°C. The hydrodynamic behavior of accelerated water droplets Is
studied photographlcally In a wind tunnel. Droplets are found to initially

_-" deform as oblate spheroids and to eventually become unstable and break up "
in Bessel function modes for large values of acceleration or droplet size.
This confirms the theory as to the maximumstable Jropiet size in the
atmosphere. A computer code which predicts droplet trajectories in an
arbitrary flow field Is written and confirmed experimentally. Finally,
the above results are consolidated into a simulation to study the heating
by electromagnetic flelds of droplets impinging onto an object such as an
airfoil. Results Indicate that there is sufficient time to heat droplets
prlor to Impact for typical parameter values and design curves for such a
system are presented In the study.
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CHAPTER1

INTRODUCTION

Aircraft icln 9 has long been recognized as one of the most !_

serious meteorological hazards to flight. Ice formation can result in

loss of aerodynamic efficiency, control and vlslbIllty, as well as

an Increase in aircraft weight and the failure of vital communication

or Instrumentation sources. Whilo a variety of techniques have been

applied to the Icing problem, there are still areas where present i
L

system fall short. 1'2

The work described in this thesis Is centered around understanding

the I_yslcs of advanced concepts In aircraft Ice protection which employ

microwave electromagnetic radiation. While understanding the physics

of advanced concepts was the fundamental thread which unlted the work,

it was often necessary, In the course of the work, to cress Into other

fields In order to obtain a satisfactory understanding of the physics

Involved. Somaof the fields In which experimental or theoreclcal

work was necessary are Atmospheric Physics, Experimental and Comiau-

rational Fluid Dynamics and the Interaction of Electromagnetlc !

Radiation with Hatter. As a result of the research, contributions

have been made In each of the above fields enroute to the original

objective of understanding the physics underlying microwave ice _

prevention systems.

In Section 1.I the Icing problem will be defined and current "

techniques used to deal wlth it _tlll be discussed. In Section 1.2

!

e

1982022556-007



7

I °
:l some of the concepts for microwave ice protection will be described.
'i
_! In Section !.3 an outllne of the following chapters and their relation-

ship to the thesis will be presented.

I.! The Icing Problem

Ice forms on aircraft structures when flight is conducted through

• areas of supercooled cloud or precipitation droplets. Supercooled

; water droplets, which occur commonly in the atmosphere, exist in a ;

metastable state. If some structure, such as an aircraft, comes in

contact with a supercooled drop, then it will begin to heterogeneously

• nucleate and form ice. The rate of nucleation and subsequent freezing I

• depends on the structure and on the temperature of the drop. This

;! is the basic mechanism for ice formation on aircraft.

,_ For slightly supercooled drops (-5°C to O°C), the drops freeze
I

slc_iy after impact and smooth "clear" ice is formed. For colder i

temperatures (-20°C to -5°C), droplets freeze quickly and an opaque,

= Irregular "rime" ice is formed. Below-20°C, supercooled water :

-' becomes less commonin the atmosphere as homogeneous nucleation begins

to occur and at temperatures below -40°C essentially all water is In

i the ice phase. 3 Frozen hydrometers do not contribute to the Icing
J

i1 problem, as those particles which do strike the structure bounce off.
The values of droplet and liquid water content applicable to

t U.S, continental cumuli form and stratifom clouds are presented in the

design criterion for ice protection certification in Part 25 of the "

• U.S. Federal Aviation Regulations (FAR's). 4,5 Howewr, the FAR's i_

neglect Icing from supercooled precipitation droplets, such as

1982022556-008
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freezing rain. Table I summarizes the range of droplet parameters!r
7

_,: applicable for cloud and precipitation icing.

• While a description of the meteorological conditions which lead to ,,!

_: Icing is fairly easy to provide, accurate forecasting of these

: conditions is much more difficult. This is due to difficulties in :

_, predicting whether a cloud will be in the supercooled-water or ice :

_-' phase, which can change quickly with time. For example, If some ice

phase particles are introduced into a supercooled cloud, through

: heterogeneous nucleation or some other means, then the cloud will

: very rapidly transition to the ice phase, due to the fact that the
6

saturation vapor pressure over ice ls lower than over water.
,:

i In addition, Icing zones have been observed to be fairly localized
7

even when accurately predicted.

' The uncertainty In predicting icing conditions causes forecasters

to be conservative and to forecast icing conditions anytime the

potential exists. The conservative nature of icing forecasting has

two detrimental effects. The most Important Is the "cry wolP'

syndrome, where pi lots become accustomed to flying in forecast Icing :_
T

conditions with no difficulty and ignore Icing fo_casts In more severe

conditions. This Is borne out by the fact that in 92_ of the Icing

• accidents between 1973 and 1977, Icing conditions were correctly ,

forecast. 2 i

The second detrlmntal effsct of conservative Forecasting Is 1

economic. Host general aviation aircraft are not cortlfled for flight -

Into "known" icing conditions. While the definition of "known"

Iclng Is somewhat anbiguous, many operators choose not to fly In

1982022556-009



Table 1. Parameters of the Icing Problem

i i

Cloud Droplets Precipi tation Droplets

Temperature O°C 6°C �-5°C

Liquid Water Content O gm/m3 O gm/m3

Mean Drop Diameter IO �40microns I + 5 mm

1982022556-010
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forecast Icing conditions. Cancellations due to Invalid forecasts

are a drain on the aircraft operators and the economy In general. ,_

The reason for the conservative approach to aircraft icing are

the inherent dangers. Some of these are: i

Loss of aerodynamic efficiency

Increased drag
Decreased IIft

Increased stall speed

Increased welght

Loss of control mow_ent

Engine failure

Aeroelastic flutter resulting from change In structural mass

dis t rlbuti on

Loss of visibility through windshield

Loss of navigation and communication antenna

Loss of cockpit instrumentation sources (pltot, static, etc.)

Loss of onboard radar

The above Icing-related phenomena can occur singly or multiply with
<

varying degrees of severity, depending on the icing conditions, the

aircraft and the Ice protection equipment on board.

The available Ice protection devices come In two basic

forms, anti-Ice (no ice Is allowed to form), and de-Ice (some Ice forms x,

and is subsequently removed). The current techniques all have

advantages and drawbacks. Electrothermal and hot-air antl-lce

devices are very effective, but require large amounts of energy in

that they evaporate all impinging water at a cost of 600 cal/gm (2.5

x I0 lO arg/gm). Freezing-point depressants such as glycol or chemical "'

pastes are efficient but are subject to erosion on the leading edge,

and co.bustion problems. Pne_,:tlc de-icing boots are efficient,
!

but tend to be unreliable and subje_c to misuse. _

t
"
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: From the foregoing, there Is clearly a need for advancement, both "

:,_ in the ability to accurately for_.cast icing conditions and In Ice

• protection once icing conditions are encountered, in addi¢ion, a
!

,! better understanding of the Icing problem on the part of pilots, as '_
.

" well as researchers, will help increase the safety and productivity

of fl ight.
i

1.2 Concepts for Microwave Ice Protection

: The use of t, icrowave electromagnetic energy for ice protection

has been proposed by a variety of researchers for both Ice detection

and ice prevention roles. Remote detection of loca|ized Icing zones

• was proposed by Atlas in 1954.8 Using meteorological radar, zones .

nf moderate to high liquid water content above the freezing level - _
,.

can be observed in real time. With the advances In ground-based and

airborne radar, this apprcach holds great promise. In 1976, ',

Hagenheim proposed using microwaves to detect the local accumulation

of |ce on airfoils and helicopter rotors by measuring the change in !

impedance, as Ice accumulates on the dielectric coating of a surface t

wavegulde located on the leading edge of the airfoll.9 The

technique Is fairly successful but suffers from anomalous measurements

when IIqule water is mixed with the ice.

Magenheim also proposed using microwave energy In a de-lcing

system. In this scheme, microwave heating at the ice dielectric

Interface of a surface wavegulde, located on the leadlng edge of the

alrfoi I, is used to break the adhesion bond of ice. Thls technique _
I0

was demonstrated in 1976. However, it has no real advantage over

electrothermal de-icing techniques, which operate on the Identical

1982022556-012
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princlp_e, and has some disadvantages in terms of complexity and

effi clency.

:_ In 1980, Hansman and Hollister proposed u_ing microwave heating

"_ 11,12 "
:_ to prevent the formation (anti-ice) on aircraft structures

The concept is to preheat the supercooled _ater droplets to above

freezing prior to Impact by a microwave field ahead of the airfoil a_dr,

thereby prevent Ice from forming. The potential advantages seen for

a microwave anti-iclng system are low power consumption, low mmintenance

and _erodynamic cleanliness, as opposed to other anti-ice techniques. ±

Low power consumption is anticipated due to the saving of the latent

heat _e fusion (80 cal/gm, 3.35 x 109 erg/gm) by circumventing the

wate r- to- Ica- to-wa te r phase t ra ns i t i ons, and to th • ab i I I ty o f ,_

selectively heating supercooled water droplets. The selective heating

of water droplets is a result of the strong absorption character'stlc

of water in the microwave regime, whereas snow, ice and metal surfaces

are poor absorbers. This implies that the wing need not necessarily

be as hot as with other techniques, which minimizes convective and

evaporati ve losses.

The advantage of keeping the airfoil as cool as possible can

be clearly seen In Figure 1.1, where the heat loss from a wet surface

exposed to a tangential flow is plotted as a function of surface
13

temperature. The ambient temperature is -20°C and the tangential

ve|ocity is 60 m/sac. The heat flux increases dramatically above :,
-x

O°C due to conductive and evaporati_ losses• In order to run the

airfoil as cool as possible and stlil prevent runback freezing

problems, the optimally efficient anti-icing system is mo,.t likely

1982022556-013
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a microwave hybrid. In a hybrid system a microwave leading edcle

• system would be combined with either a freezing-point depressant or

an electrothermal system on the aft al rfoll sections. Advanced

14
freezing-polnt depressant pastes have been successful at suppressing

runback refreezlng, and can operate at an/)ient temperatures, but are

subject to rapid erosion on the airfoil leading edge. Electrothermal

systems which operate slightly above freezing are also efficient,

but have a problem Initially heating the droplets. These techniques

are, therefore, well-suited to being combined with microwave pre-

heating in order to approach optimal efficiency in cases where

antl-iclng is required.

Power requirements for typical general aviation parameters are

estimated for the microwave system to be on the order of 100 W for

propeller anti-icing and I k;/ for wing anti-Icing. An additional

advantage of the microwave system Is that, neglecting circuit losses,

power is only consumed when liquid water is present, and thereby

has the capability to serve as Its own detector.

An example of a possible first-order microwave anti-iclng scheme

employing surface waveguides is shown In Figures 1.2a and 1.2b. In

Figure 1.2a, a cross-sectlo_ of the airfoil showing the dle|ectric

inset for the surface wave Is presented. The electromagnetic wave

propagates along the leading edge of the airfoll and is bound to the

surface wavegulde. The electromagnetic field strength characterlstl-:I
• I

(:ally decays exponentially away from the waveguide. 15 The waves are
!

', launched at the wing root and propagate to the tip, where the energy

! not absorbed by the water droplets is collected and recycled back

I

1982022556-015
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Figure 1.2a Cross-section of an airfoil with

surface wavegu! de.

Figure 1.25 Schematic of the microwave anti-icing -

system employing surface wavegui des.

L
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Inside the wing to the root in a "race track" pattern. It should be

• noted that the launching-retrieving process is not perfectly
J

efficient. The presence of liquid water can be measured by a power I

loss as observed through a directional coupler and detector on the

returE path of the circuit.

The microwave anti-ice system has some distinct and unique

advantages over other anti-icing systems. There are, however, several

questions to be answered. The primary question is whether there is

sufficient time to heat Impinging droplets at velocities of

aeronautical relevance (80 to 200 w4)h). While there are other

questions such as runback-refreeze, electromagnetic field optimization i

and circuit efficiency, these become moot if there Is not sufficient !
I

tlme to heat the droplets. For this reason, the major thrust of

this thesis will be to endeavor to determine, in a systematic manner,

whether there is sufficient time to heat atmospheric water droplets

to above freezing prior to impact.

I. 3 Thesis Structure

The primary goal of this thesis, as discussed In Section 1.2,

is to understand the physics of a supercooled water droplet being

heated by micro_ave electromagnetic energy, as It approaches an

airfoil. Thls problem is studied by means of a computer simulation

In Chapter 6, which was designed to be as physically complete as

possible. In order to provide the physical background for the

simulation, some preliminary work of a more basic nature was necessary.

In Chapter 2, the theory of absorption by hydrometers Is

1982022556-017
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reviewed. In Chapter 3, the absorption and scattering of mixed-phase

ice�water particles is studied, both theoretically and experimentally. •

In addition, values of the dielectric parameters for supercooled _.ater

droplets are experimentally measured. In Chapter 4, the deformation

and stability of droplets subject to an external acceleratlon are

studied, both theoretically and in the wlnd tunnel. This work is

Intended to be combined with that of Chapter 2, where deviations from

spherlclty are found to have a pronounced effect on the absorption

properties of droplets, r

In Chapter 5, a computer simulation of water droplets is

presented and experimentally verified. Finally, in Chapter 6 the ".

" results of the previous chapters are combined into a computer code,
°

which follows the trajectories and heating of droplets as they approach

an airfoil. In Chapter 7, the results and contributions of the .

work are briefly reviewed by way of a conclusion.

"I

*i i

I
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CHAPTER2

THEORYOF ABSORPTIONAND SCATTERINGBY HYDROMETERS

A brief summary of basic scattering theory applicable to atmospheric

hydrometers is presented in this chapter. In Section 2.1 some

scattering terminolo_/ is defined. The known dielectric properties of

liquid water and ice are presented in Section 2.2. In Section 2.3 and

Section 2.4 the approaches of Rie, Raylelgh and Gans for scattering from

spheres and ellipsoids are briefly discussed. Finally, in Section 2.5

the problem of a collection of scatterers is considered.

2.1 .Sc.a.,_tte r In9 Temi .nology

In the classical formulation of the scattering problem, a plane

wave is Incident on the scattering object. Shown in Figure 2.1 are the

cases of Interest here. The w_ve is electromagnetic and propagates in

the direction with wave vector k 0 - -_- no . The wave Is

polarized with the electric field E! in the _0 direction.

The scattering object is of arbitrary shape and Is inbedded in a _

background of unifom dielectric material characterized by the complex

dielectric constant t o . For most atmospheric applications, ¢0 Is

taken to be unity, the value for free space. The scattering object has

a complex dielectric constant ¢ which can vary spatially. The

background and the scattering object are assumed to be dielectric in

nature. Therefore, the magnetic permeabilltles of the background and

the object are unity. [

1982022556-019
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Ftgure 2.1 The scattering problem showing the tnctdent and
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The energy flux of the Incident wave is characterized by its

Poynti ng vectore

u C"sl x ;i (2.i) ,

Nhich is aligned in the _0 direction.

When the incident wave Impinges on the object, energy can be lost

either *.o scattering or to absorption by the object. These losses are

characterized by various cross-sections. Cross-sections have units

of area and, when multiplied by the Incident Poyntlng flux, yield the

power flow Into absorption or scattering. Addition of the absorption

cros--sectfon G and the scattering cross-section (T equals thea s

total cross-section

°t = °a + Üs (2.2)

which measures the total energy flow out of the wave due to the object.

In many cases, the scattered energy is not Isotroplc. The

differential cross-section, do_._(n_,__).)is then used. When multiplied
U_

A

by ISil it yields the power flux with polarization • through a

differential of solid angle centered about the direction defined by n.

The scattering cross-section is then found by Integrating over the

total solid angle and all polarizations.

1982022556-021
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• For radar applications the energy scattered back toward the source "
i,

is of special importance. Toward this end, the back-scatter cross-

, section ob Is defined. It is the scattering cross-section of an ,_.

isotroplc source with a constant differential cross-section equal to

that of the object in the backscatter or negati_ no direction. _,"C

: do( - )
o' b " d_ cl.qdi_ (2 .Ii) _,_._

,_ It should be noted that In the literature, C_a, Os, a t are -

sometimes replaced by Qa' Qs' I_t' and ob Is sometimes simply o.

The above convention has been chosen to avoid confusion with the "quality L

factod' (_ In later sections.

• _

2.2 The Dlelectrlc Properties of Water and Ice

The dielectric properties of a non-magnetic material can be _'

characterized by the real and Imaginary parts of its complex dielectric

constant. _.

c(f,T) - ¢'(f,T) - l¢"(f,T) (2.5)

The real part Is a measure of the polarization of the material

subject to an applied electric field. The Imaginary part is a loss "_

term measuring the energy transfer from the field to the material. The %

dielectric constant Is a functlen of frequency f and temperature T.

The frequency is related to the tree space wavelength X by the speed

i of II_t c. -
I

t :
Q

,j
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: c (2.6): _ f-y
: )

)

)

_ Unless otherwise noted, c will be assumed to be equal to unity for
L

background materials of air or free space.
, +..

" Values of the dielectric constant for water and Ice have been ,

: ' extensively measured. Several good tabulations have been published,
L

with those of yon H|ppe116 and Ryde17 being especially useful.

The temperature dependence of c' and E" for water at several

wavelengths is plotted in Figures 2.2 and 2.3 from _n Hlppel's data.

The dependence, of c' and the loss term c" on T Is clearly not

negligible, particularly at the lower temperatures. The absence of
i

data for supercooled water is distressing, because of the strong

dependence of E on temperature. The lack of data Is primarily due to :

the difficulty in maintaining supercooled water, in the liquid state,

under controlled dlelect,'ic measuring conditions. H_vert supercooled

water is Important because it occurs commonly In nature.

For some applications It is convenient to define the complex

refractive Index m as the square root of ¢:

m- - n - (2.7) '

where n is the refractive Index and K iS the absorption coefficient

of the materl_ll. It will also be convenient to define

2
m - l

m T &
)

i
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30 dielectric constant versus temperature.
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70 Figure 2.3 Imaginary part of the

dielectric constant versus temperature
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Values of n, K, IK 21 and the imaginary part of -K given by RydelO

; are shoqn for water and ice In Tables 2.1 and 2.2.

7

2.3 Absorption and Scattering by Dielectric Spheres

The scattering of electromagnetic waves by a dielectric sphere I_

one of the few scattering problems for which there exists a complete

analytical solution. The general solution was first publ|shed by Hie

in 1908.18 Hie's work was preceded by that of Lord Rayleigh. In 1871

Raylelgh solved the scattering problem in the long wavelength limit as

part of his explanation for the blue color of the sky 19,20 Both

solutions are discussed in the following.

!
v

.2.,3.1 Hie Theory
4,

I_le's analysis of scattering by a dielectric sphere18 is simple

in concept although somewhat complex in detail. The general approach

will be outlined here along with the results. The reader Is referred

to Stratton's text 21 or H|e's original work 18 for the details.

: Hie's approach was to write the field of the incident plane wave

as the sum of vector spherical wave functions centered at the sphere.

The inciden: field gives rise to oscillatin 9 cherges In the sphere which

produce secondary fields Inside and outside of the sphere. These

external and Internal fields are also _xpanded in sphericaJ wave

functlons. The expansion coefficients for the secondary fields are

found by Imposing boundary conditions at the orib,n and the surface of

the sphere.
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Table 2.1 Values of the dielectric parameters fo- water (taken from

Ryde, 17)

i , i • , ,m , | i i

>.(cm)

I0 3.21 1.24 0.62

T(°C)
20 8.88 8.14 6.15 4.44

10 9.02 7.80 5.45 3.94
-_. n

0 8.99 7.14 4.75 3.4,5

- 8 6.::8 4.15 3.10

II _o o.++ ,.oo ,., ,._9
,o o90 ,._, ,,o ,._
o _ ,.4, ,._, _.7_ ,.o_I

I 20 0.928 0.9275 0.9193 0.8926

10 IKI 2 0.9313 0.9282 0,9152, 0.8726I I

0 0.9340 0.9300 0.9033 0.8312

- 8 0,8902 0.7921

ZO 0.00474 0.01883 0.06,71 0.0915

10 Im(-K) 0.00688 0.92_7 0.0613 0.1142
0 0.01102 0.0333 0.0807 0.1441

" 8 0,1036 0.1713
i • i i m i i i i m i

|
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+ rable 2.2 Values of the dielectric parameters for ice (taken from

Ryde, 17)

)

i t

n 1.78 At all temperatures

0 24 x 10-4

-I0 k 7.9 x IO-4

-20 5.5 x 10"4

IKIz 0.197 At all temperatures. This is
for ice of unit density, the
value to be used when 0 is
diameter of melted ice
particle.

i (Harshall and Gunn, 1952.) "
! 0 9.6 x 10"4

i -10 Im(-K) 3.2 x 10-4

-20 2.2 x 10-4

: -- i i m • iii • • i ...... i i

* Refractive index of ice is independent of wavelength in

the centimeter band.

i
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In order to calculate the cross-sections once the secondary fields

are known, the Poynting flux is integrated over a spherical surface,

concentric with the scatterer to yield the energy f|ow. Integrating

the total Poynting vector, which includes the incident and secondary

fields, will result in the energy flow into the sphere and thus o a.

Integrating the scattered Poyntlng vector with only the secondary fields

will yield the scattered energy flow may from the sphere or o . Thes

problem is simplified by assuming that the sphere of integration is large i.:
-i.

enough that the asymptotic values of the spherical wave functions can be

used.

The foregoing analysis results in the following cross-sections

)`2 O0 ,'_

0 t - _-_ (-Re) 23 (2n + l)(a n + bn) (2.9)
n=l

)2 ®

', --- z (2n �l)(lanl2 �Ibnl2) :as 21T n,,1 (2.10)

aa- ot- os (2.11)

i

Ob 1_ (2n + I)(a n -bn) 2
n--I

where ), is the wavelength in the background medium. The expansion

' coefficients of the exter lor secondary field an and b n can be
2

thought of as the nth magnetic and electric multiple coefficients.

They are made up of spherical Bessel functions and depend on properties

of the sphere such as the complex refractive Index m and (1 where

2wa
a " _ and a is the radius of the sphere. •

i
I
!
l,
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ii The Hie cross-sections have been calculated for ice and water spheres °
:1

t by a variety of investigators for different values of (x and;i

temperature, i 7,22-25

2.3.2 RayleI 9h Theory

For small spheres or 1on9 wavelengths

i

2_a
Q = "X- <<I 12.131

the simplifying assumptions of Raylelgh can be made. Physically, the

above constraint implies that the incident field ls spatially unlform

: over the sphere. In this situation the exterior secondary fields -

from the sphere can be replaced by those of an oscillating dipole "p

2. I
. (c_._;__.)c- 1 a3 _'i . (:_..Z.) a3 -_Ei (2.14)

m +2

where a is the radius of the sphere and "1_i Is the Incident electric

field. The cross-sections o and ob are calculated using theses

fields. The absorption cross-section o can be calculated from thea

ohmic losses of the oscillating charges required to create the dipole.

The preceding cross-sections can also be calculated using the Hie

formallsm by expanding the coefficients an and bn in terms of a.

By neglecting terms of higher order than e6, all multipoles higher than

the dipole drop out. Both approaches yield the fol lowing cross-

sections23

1982022556-030



30
,.

ot - oa + os (2.15)
i #

• 2 )`2 _6 IKI2°s " _ 7 12.161
+;

)2 _30 - -- Im(-K) (2.17)a _

)`2
ob - _- a6 IKI2 (2.J8)

where

Values of IK 21 and Im(-K) _re tabulated In Section 2.2. Noting

2_ra +
that cc " T the scattering cross-s-_ction and backscatter cross-

section have the characteristic l/_ 4 d?.pendence known as Rayleigh's

la_.

The Rayleigh cross-sections are of extreme importance in the study

of scattering from atmospheric hydrometers. They are valid over a

wide range of useful parameters and are thP basis of comparison for

- those refinements which attempt to include such additional effects as

non-spheri cal shape or non-homogeneous mate ri al. +
I

I

1

2.4 Absorption .and Scattering by Ellipsoids

The problem of scattering by an ellipsoid of revolution was treated

In the long wavelength limit by Gans in 1912. 26 Gans' approach is

essentially an extension of Raylelgh_s work. He resolves the incident "

electric field Into components along thres perpendicular axes, one

being the axis of rotation of the ellipsoid. Gans then assumes that

I

, , •
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the electric field components excite dipole oscillations along the
I

ellipsoid axes. Scattering phenomena can then be calculated by analogy

to Raylei9h scattering.

If the ellipsoid coordinate system is _, rl , x , with /_ the _

axis of re_lution, then the dipole moments given by Gans are

PF, " gEe (2.20) ,:"

Prl " g'En 12.21) !

PX " g'Ex (2.22)

_er'_ °

g = V(m2- I) (2.23)
4_ + (m2 - I)P

g, . V(m2 - 1) (2.24)
+ (2. I)P'

for oblate spheroids.

P - 4_ - 2P' - _. [I - sin'le] (2.25)

and for prolate spheroids.

P - kw - 2P' - kw ('_'e Zn_l I] (2.26)
e

where V is the volume of the ellipsoid and • is the eccentricity

defi ned as i

• -- 4 I - (B/A) 2 12.271
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4

V ,,,"_"AB2 Prolate (2.28)

V - _ A2B Oblate (2.29)

wlth A and S being the major and minor radii of the ellipsoid.

The Gans backscatter cross-sections for water, ice and snow have

been calculated for randomly and preferentially oriented ellipsoids by

27
Atlas, Kerker, and Hirschfeld. Their work indicates that for water

ellipsoids oriented with major axis along El, ° b Increases roughly

linearly with axes ratio A/B up to values of order 10. This effect

is geometrical and has little dependence on wavelength. Ice and snow i

are seen to be only weakly dependent on geometrical factors due to their

generally small dielectric constant.

The absorption cross-section for oriented ellipsoids will be of

particular interest in later sections and was not calculated by Atlas,

et al. Therefore o will be calculated here using the Gans approach.
a

The incldenL c_.lectrlc field is assumed to prc_agate perpendicular to

the axis of rotation of the ellipsoid. The problem then becomes

essentially two-dlmenslonal. In Figure 2.4 the orientation anglo 0 .
db '_

is defined as the angle between El and _.

The absorption cross-section o is calculated by assuming that
a "

the /_ and n dipoles have separate cross-sections o_ and on which
?

are excited by the appropriate components of the Incident field. The

absorption cross-section is then

0 a - O_ cos2a + Or1 sln2a (2.30)
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I

i] OblateEllipsnid
i
l "
i ;
i
(
,!

' n _Ei _ "

1

C

Prolate Ellipsoid

Figure2.4 Orientationof theincidentelectricfield

wlthrespectto theelllpsO]dcoordinatesystem.

{
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The partial cross-sections o_ and _rl are _flned by analogy to

Raylelgh scattering as

8_2
O_ " _ Im(-g) (2.31)

8_2
On " T Im(-9') (2.32)

_here X is the free space wavelength and g, g' are the Gans factors. :

The ratio of o6 and or1 for water at O°C to oa of an _

equivolumetrlc sphere is plotted versus the axis ratio A/B for oblate

and prelate spheroids in Figures 2.5 and 2.6. Of Interest is the strong

Increase in absorption as the el lipsoid becomes more eccentric. This

appears to be valid independent of wavelength, subject to the long

wavelength limit.

4_

2.5 Absorption and Scattering by a Collection of Scatterers

In many cases of signiflcance, the scattering object Is actually a

collection of smaller scatterers. The absorptlon cross-section o a for ,i

such • collection is, to first order, just the sum of all the Individual

cross-sect ions

oa- z: o 12.33)
j a,j

as long as the scatterers are not in Immediate proximity to one another.

This can be Illustrated by considering two Rayleigh spheres of radius a

separated by a distance r. The scattered electric field from sphere 1

i
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Figure 2.5 Ratio of o_ and Or1to the spherical value '"
versus AIB.
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I Figure 2.6 Ratio of o{ and on to to spherical value

I00. I versus A/B.
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i
_:i_ felt by sphere 2 Is of order (r)3 Ei where Ei is the incident " •

_i electric field. It Is clear that for lnterparticle spacings greater than
_ ._

•: a few radii, the Incident field dominates and the particles absorb i

': i ndepende nt l y.

Collective effects can be important for the scattering cross-

sections. In the case of Identical scatterers the differential :(

scattering cross-section can be written as2_̂

ai I one
scat te re rs scat tere r

where F(q) is the structure factor used in x-ray crystallography. It

, depends on the distribution of scatterers and is defined as

= Iz expClq• xj)lz (z.3s)
j o :

The vector q is the change in wave vector _

and xj is the position of the jth scatterer.

It is Instructive to consider F(q-'L) for the backscatter cross- '-

" section _ - 2_"O. For a uniform distribution of fixed Identical "
-j

" scatterers

:

• FizZ'0) - 0 (2.361 "

This is due to the phase cancellation of backscatter signal from
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• one scatterer by another separated by an integer number of half wave-

lengths alon 9 the Incident direction. If, however, there is some

re|ative motion between the scatterers, then the phase cancellation
i

averages out and

r(2_O) - N (2.37) :

where N Is the number of scatterers. The backscatter cross-section
| :

for meteorological scatterers can then be wrltten as ,

ob - _ %,j (2.38)j

This effect allows the back,scatter cross-section to be related to

such meteorologically relevant parameters as the liquid water content

: and the rainfall rate. _."
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* CHAPTER3 _

: i ABSORPTIONAND SCATTERINGTHROUGHTHE ICE-WATERPHASETRANSITION

• _ The problem of scatterln_ from melting and freezing hydrometers Ist
+

considered in this chapter. In Section 3.1 the theory of scattering

_' from mixed-phase particles ls discussed, along with a mode] for

scattering by melting atmospheric particles. In Section 3.2,
•

{ experimental techniques used to measure absorption during the phase1

.. _i transltlons are presented. Finally, Section 3.3 contains the results

: of the absorption cross-section measurements.
• J

i" 3.1 Theory of Scatterln_ by Heitln_ and Freezin_ Hydrometers

The scattering by water-coated ice spheres has been studied

: theoretically by several investigators. In 1951 Aden and Kerker 29

extended Hle's theory to the case of two concentric spheres. In 1952,
30

Langleben and Gunn calculated cross-sections for water-coated ice

spheres using the Aden and Kerker results. Addltlonal cross-sections

have been calculated by B¢..en, Herman and Browning 31,32 Experlmental• !

measurements of the backscatter cross-sections for large melting ice

spheres were made by Atlas et al in 1960.33

Labrum studied the problem of scattering by two confocal
!

_ ellipsoids in 195;234 in an attempt to explain enhanced reflection from

the "bright band". The "bright band" is observed on meteorological

radar as a hlghly-reflective zone located Just below the freezing level.

The enhanced reflection in the "bright band" can only be partially

: explained by the dynamics of malting precipitation particles. Labrum

applied the Gans methodology to calculate backscatter cross-sectlons.
p

i
!
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He also made some experimental measurements of backscatter from melting

35
:_ nonspher!ca] ice particles. Because of exper|mental diff|culties, ,

however, Labrum was only able to get general qualit°:ive agreement ,

wlth the theoretical backscatter cross-sect ions. *.

In Section 3.1.1, the above theoretical results for spheres and

ellipsoids will be summarized. In Section 3.1.2, a model of the melting

and scattering processes which include the theoretical cross-sections

wi I ! be presented, :--

; 3.1.i Water-Coated Ice Spheres and Ellipsoids

An example of the absorption, scattering, and backscatter cross- .

sections calculated by Langleben and Gunn30 is shown in Figure 3.1.

In this case the wavelength is 3 cm and the equivalent melted diameter
¢

D of the sphere is 2./I mm. The cross sections are normalized by
eq

thelr melted values _melted and are plotted against the mass fraction

of water _ 1

f = (3.1)
w Hw+hi

where Hw is the mass of water In the sphere and Hi is the mass of

i ce•
!

The behavior of the cross-sectlons in Figure 3.1 with fw Is

typical of those water-coated ice spheres with radius _ess than ),• ,

The scattering cross-sections Increase rapidly with fw to the valuo

for water spheres• The absorption cross-section rises very rapidly

ii
with fw to more than twice the melted va!ue between fw " •1 and

fw " .2 and then gradually reduces to the melted value.

• t
r _
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The Increased absorption of a partially-melted ice sphere can be

understood physically by considering the melted case. The absorption by

a melted sphere can be thought of as ohmic losses arising from currents

which create oscillating mul°ipoles to match the boundary conditions at

the sphere's surface. If an obstruction, in this case an ice sphere,

is placed in the center oi: the water sphere, the path length for the

currents is Increased and the ohmic losses will similarly increase. If

the Ice sphere is very small there will be little effect, and If the

• sphere is predominantly ice, then the excited multiples are weaker and

much of the current will flow In the low loss Ice, resulting in little

absorption.

For scattering from melting ellipsoids of revolution, it will be

assumed that the melting effects of this section and the Gans shape

effects of Section 2.4 can be included multiplicatively. Therefore

; o
O = O gans, o ( 3-2)

Omelted Osphe+.e sphere

Here o Is the cross-sectlon to be calculated, o is the
°reel ted

ratio of partlally- to totally-melted cross-sections for a sphere. The
o

: ratio _ is that of the Gans cross-section to an equivolumetric
°s phere

, sphere and Osphere is the cross-section of the equlvolumetrlc water

+* sphere.

Backscatter cross-sections calculated as above agree wlth those of

Labrum31t to at least first order. The above simplification is

considered acceptable considering tha_, for most applications, the

assumption of an ellipsoid of revolution Is itself only an

approximation of some more complicated shape.

i
I

+1

1982022556-043



43

_.1.2 Hodel of Helting of Scatterers In the Atmosphere

The approximation of atmospheric scatterers as bodies of

revolution works well for ice, where the low dielectric constant makes

shape effect unimportant, and for small water drops where surface tension

dominates. For melting ice crystals, however, a somewhat more complex

model must be used. In order to model the melting process, snowflakes

were observed as they fell onto a plate of warm glass. Five distinct

phases of the melting process were observed, although not every particle

exhibited all five phases.

The five phases are shown schematically in Figure 3.2. Phase l

is the ice phase before melting. In Phase 2 the crystal begins to melt

at its extremities, where the heat transfer is the greatest. Small

water spheres begin to form at the extremities. In Phase 3 enough

water has malted to coalesce into a water shell. There is, however,

still sufficient ice structure in this phase to maintain a non-spherlcal

shape. In Phase 4 the ice has melted to such a point that the

structural integrity of the ice is gone and the surface tension of the

water causes the drop to collapse into a spherical shape. Phase 5

is that of the totally-melted sphere.

The absorption and scattering characteristics of a melting Ice

particle are different In each of the five phases. An example of the r

scattering behavior of a melting crystal is shown Ir Figure 3.3, where

oa and c;b are plotted against the mass fraction fw" In Phase ]

the particle scatters and absorbs like an equlvolumetric Ice sphere.
I

In Phase 2 the particle can be appr_xlmated as a col lection of Raylelgh ,wr

scatterers. The absorption cross-section is, therefore, a linearly-

increasing function of fw" The backscatter cross-section is

4 _
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PHASE 1

PHASE 2

•_ PHASE3 0

PHASE_ :

P

PHASE5 Q

Figure 3.2 Schematic representation of the five

_ases of melting.

¢
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dependent on the fore function F (2_ O) defined in Section 2.5. It will, ,

In general, be a complicated function depending on the orientation of ,

the particle and the locations where melting begins. In many cases
4

the crystal will have some symmetry, hexagonal or otherwise, and the

melting should initiate symmetrically, which simplifies calculation or

F. The maximum value, of F Is N2 where N is the number of water

spheres.

in Phase 3, shape effects• as approximated by Gans scattering, are
| :

combined with the melting effects to calculate the cross-sectlons as in

Section 3.1.1. in the example shown in Figure 3.3, the cross-sections

are enhanced by shape effects, Implying that the electric field is

oriented at least partly along the major axis. It should be noted that

the shape effects could also degrade the cross-sections to values lower

than those of a melting sphere, if the electric field were oriented '+

i along a minor axis.

In Phase 4, the particle acts like a water-coated Ice sphere for

oa and ob. Finally, in Phase 5 when the particle is totally melted,

the cross-sections are those of a water sphere.

" Freezing water drops in the atmosphere exhibit much simpler

behavior than the melting case. The drops are generally in the

metastable supercooled state prior to melting. When crystallization

occurs• it does so rapidly and _latively homogeneously. The

;- _catterlng behavior of a freezing drop can be approximated by that of

• sphere or an el I I psoi d wi th a homogeneous dlelectri c constant

: ¢lco Hi + %ater I_
, i

¢" "I + ". (3.3)

;
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which Is the massweighted average of the dlelectrlc constants eic e

. and aware r of the constituents.

3.2 Experimental Methods for Heasurlng Absorption During Phase

Transi tion

Relatively few experimental measurementshave been made to verify

the theoretical cross-sections of melting and freezing hydrometers.

Radar observations of phenomena such as the "bright bancf' yield some

Inslght, but are subject to many uncertainties, due to factors such as

precipitation dynamics, coalescence, and general uncertainty as to the •

exact nature of the scatterers.

Controlled experiments which measure the cross-sections of a

single, scatterer are difficult, due to the very small power changes

involved. Those measurements which have been made, by Labrum35 and ii

those by Atlas et a1,33 measured backscatter cross-sections under less-

than-Ideal conditions. Labrum measured ob for melting hemispheres

placed in a wavegulde. Atlas et al measured c;b for very large

melting spheres suspended by a balloon in the near field of a

mteorologlcal radar.

A technique for accurately measuring the absorption cross-sections

of melting meteorological scale drops using perturbation techniques in •

a resonant microwave cavity has been developed. Section 3.2.1

doscribes the technique and the particular cavl ty used In the

experiments. In Section 3.2.2 the experimental set-up is discussed.

Section 3.3 contains the experimental results obtained using this

technique.
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' 3.2.1 Perturbation Techniques In a Resonant Cavity

The technique used for measuring the absorption cross-section o a

consists, basically, of measuring the change In quality factor Q of

a high Q resonant cavity where

Q = _ energy stored in cavlty = u U (3.4)
power loss in cavity P

and m = 2_f (3.5)
I

• U - energy stored in the cavity (3.6)

P = power loss in the cavity (3.7)

The value of I_ can be related to _a If the drop ls non-magnetic

and Its dimensions are small compared with the scale length of the

electric field inside the cavity. Under these assumptions the

scatterer sees an oscillating electric field of strength EO. The

power absorbed by the drop Pd can be written using aa and the

: Poynting vector which would result if the electric field were in free

space.

c (3.8)
Pd = °a _-_ EO2

To relate Pd to the change In Q when a drop Is Introduced Into

a cavity, the case of the empty cavity must first be considered. For

the empty cavity
U

% - 13.9)
W
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where Qe is the empty Q and Pw is the power dissipated in the

walls of the cavity. _#henthe drop Is placed In the cavity, assumingo

U does not change, the perturbed value O.p becomes

u (3.10)
QP'_P+Pd

If the droplet Q is defined as

U

Qd= _ F_d (3.11)

then

I 1 1 (3.12)

Noting Equations 3.8 through 3.12, the absorption cross-sectlon can be

wrl tten as

%. 1
CEoZ_dd (3.13)

cavity Is such that U is proportional to E02, then
If the the

electric field stre.gth will drop out.

The cavity chosen for drop measurements was a right circular

cylinder operatlng In the THO10 mode. This mode was chosen because

of Its fairly unlfom electric field at the center of the cavity

oriented along the cavity axis. The THOI0 mode also has vc _/ small

surface currents on the end plates near the axis, allowing holes to be

drilled in the endplates with mlnlmal effect on the cavity fields.
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The cavity was designed to resonate at 10.66 GHz. Its diameter D

was 2.153 cm and its length L was 1.229 cm. Figure 3.4 is the mode
36 "

chart for right circular cylinders, shGwing the operating point for

the cylinder. There is good _ode separation, with the closest mode

being the TEll I at 14.4 GHz. Since the THOI0 is the lowest mode,

frequencies lower than the TMOI0 resonance are cut off. The cavity

is constructed out of copper and the empty Q Is calculated to be 9000.

' The electric and magnetic fields for the TROI0 modeare

-4.81 . -l_t
Ez(p,t) = EOJoiT) e (3.14)

8_(p,t) = -iEoJ i(I°'_lp-) e-i_t (3.15)

where p, ¢. and z are the standard cylindrical coordinates. With

the fields known, it is possib'!e to calculate the stored energy U.

Noting the periodic time dependenceand assuming the unperturbed

dielectric constant to be unity

I I + IB_(p,t) d vol (3.16)
U = I-_ I Ez(p,t) l 2 12

¢avity

U " L [Jo2(_J. p), ji 2 (4._lP__)lp dp (3.17)
_0

U = 0.0084 (D2L) E02 (3.18)

2
Note that U has the desired E0 dependence. For the values

of D and L described above

|

I
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2.0 _.I° TH011

._._" _- TEll 1E

o 1.5 _l_'Closest competing

-'_ _-' point

1.0 _Operating point

_o_ .................. 4. ........ THO10
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X

_ ._ '_' 0.5
a z.0 z'.5 3.0 3.'5
A 2
_- (OIL)

Figure 3,it Hode chart for right circular

cylinder showing the TH010 operating point

and the closest competing point.
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U = 0.048 E02
(3.19)

The re fore
\

0"Ok8_E02 I = 0.048 f (cm2) (3.20)-
°a _ E02

The absorption cross-section is simply proportional to the product of

f and I/Q d.

3.2.2 Experimental Set-Up

The microwave circuit used to measure cavity Q Is shown in
1

Figure 3.5. Power was generated by an X-band s_eep oscillator which

varied frequency linearly over a specified range near the resonanL
(

frequency. Power was transmitted through a variable attenuator and

: by a commercial wavemeter to provide a frequency reference. The

, cavity was connected to the circuit via a short stub to a coaxial tee! • i

The coax coupled magnetically Into the cavity fields by a loop oriented

in the _ direction located on one of the end plates. The tee was

:t connected to the rest of the circuit by flexible coaxial cable. This i
l

allowed the entire cavity assembly to be placed In a cold pox. The i
/

cable was terminated at both ends by matched attenuators in order to I
i

reduce reflections.

t After passing the cavity, power was measured by a crystal detector.
1

The crystal had been callbrated previously against a bolometer. The

output of the crystal went to a digital scope. The scope was
ti

triggered by the sweeper and had the capability to store traces on floppy
B
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disks for ]ater analysis. This feature was used when measuring time-

dependent phenomena, such as melting effects.

In Figure 3.6 a typical scope trace of crystal voltage versus time

or,equivalently, frequency, is shown. Th_ reference marker and the

cavity resonance are visible. When the frequency is off resonance,

no power is absorbed by the cavity and the power to the crystal Is at

a maximum. On resonance the cavity is very absorptive and the crystal

power is at its minimum. The loaded Q of the cavity, which includes

coupling effects, is
,i
j fo
" Qt=-_ (3.21)

_F where fo is the resonant frequency and I" Is the full width at half
"41" maximumof the resonance. The cavity Q discussed previously Is

the unloaded Q which is related to QI. for a circuit such as this by

00my__'x0. LT"x'0"__ q _ _ (3.22)

where Pmex and Pmin are the maximum and the minimum powers

received by the crystal. 37

The actual cavity assembly used in the _xperiment Is sF,own in

Figure 3.7. It was machined out of 1.5 inch copper rod. The cavity

diameter D was 2.153 cm and the cavity length L was 1.229 can. One

end plate was removable for cavity cleaning and polishing. There were

holes drilled on axis in each of the ].5-cm-thick e)d plates with a

2 mm radlus to provic_e access for drop Insertion. The cavity was
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Figure 3.7 Resonant Cavity Assembly.
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supported horlzontally on a vee block In direct contact with a

. thermometer to measure cavity temperature.

Drops of disti_led water were supported by surface tension on a

quartz fiber with a radius less than .! nun. An example is shown in

Figure 3.8. Drops were placed on the fiber by a syringe and dimensions

were measured In situ b'i a direct-read meas_rl,g microscope. The fiber

was oriented along the z-ax'_ of the cavity and ran through the holes

In the end plates. It was held on axis by plexiglass supports on

either end of the cavity. The entire cavity a_sembly was portable so

that it could be moved in and out of a -20°C cold box without disturbing

the drop or the microwave circuit. Typical cooling and warming curves

are shown in Figure 3.9.

The resonant frequency and Q of the empty cavity were faeasured.

The resonant frequency was 10.65 6Hz and the Q was 8990, which are

very close to the design values of 10.66 GHz and 9000. The differences

are attributed to the end plate holes and imperfect cavity surfaces.

It should be noted that the empty Q varied somewhat due to oxidation

on the interiorcavity surfaces, resulting from exposure to moisture

and the thermal cycling of the cavity. In order to correct for this,

the cavity was polished periodically and the empty Q was measured

prior to each drop run.

3.3 Experi menta I_Resu ! t_s

The experimental results of absorption measurements for water drops •

are pre__ented In this section. The measured cross-sections for room- '

temperature drops are found to agree with the Rayleigh values in

i :.
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Section 3.3.1. In Section 3.3.2 some measurements of the dielectric

:i constant for supercooled water are presented. Finally, Section 3.3.3 .

contains absorption data for spherical and non-spherical hydrometers

during melting and freezing.

4

, 3.3.1 Absorption Cross-Sections for Warm Drops
i :
! Absorption cross-sections were measured for distilled water

i drops at a room temperature of 2O°C using the techniques described in!

:i Section 3.2. The resonant frequency of measurement was 10.64 GHz

i * .OI GHz. Drops with diameters varying from 0.5 mm to 2.0 mmwere

measured. The measured absorption cross-section is plotted against
t

|

, drop volume V in Figure 3.10. The straight line is a plot of the

ii Rayleigh absorption cross-sections

t 6_V Im(-K) (3.23) "
; °a = T

,2

with Im(-K) taken from Ryde17 at 2O°C to be 0.01883. The data agrees

well with Rayleigh theory for these small essentially-spherical drops,

The scatter in the data is malnly attributed to uncertainty in

measurement of V.,i

I

3.3.2 Dielectric Parameters of Supercooled Water

With the confidence In the measurements of Rayleigh absorption
I

cross-sections gained from the results of Section 3.3.1, measurements

were made of oa as a function of cavity temperature T in order

to Infer the dlelectrlc parameter Im(-K) from the Rayieigh

cross-sections In equation 3.23. Heasurements of IKI2, which can be
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; linearly related to the shift in the resonant frequency fo by ,

perturbation theory, were also attempted. Measurements of JKI2,

however, were unsuccessful because the very small changes in IKI 2 i

with temperature were masked by relatively large changes in the

resonance frequency due to thermal expansion of the cavity. Lack of

IKIz measurement is not considered too important as, in applications,

If;I 2 is generally assumed to be constant with temperature.
i-

• Reasurements of the supercooled temperature dependence of Im(-K)

were made by insertin 9 distilled water drops in a warm cavity and i
{
t

placing the cavity assembly in the -20°C cold box. The drops were i
t

assumed to remain in thermal equilibrium with the cavity. Microwave ' '.

heating of the drop was neglected because of the lo_ power of the sweeper

(less than 1 roW)and the low duty cycle on resonance (less than 0.0OI).

Liquid drops were observed at temperatures as low as -17°C before .

crystallization. _

_. Values of 1/(_d and cavity temperature T versus time for a :

typical cooling run are shown in Figure 3.ll. The drop cooled with

increasing absorption to -17°C where it nucleated and the absorption

dropped to the value for ice. At 16 minutes Into the run there was

a sudden jump in 1/Qd which lasted for 12 minutes. Similar jumps

: were observed on subsequent runs, although occurring at slightly

different times and temperatures. These anomalously-high values of
J

I/Q d are not thought to be physically related to changes in Im(-K), :

but rather to some thermal effect in the microwave circuit. In the <

following, therefore, such values will be omitted.

Figure 3.12 is a plot of the observed velues of Im(-_; as

i,

m
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calculated by equation 3.22, along with the values of Im(-K)

16 17
_ . calculated from the dielectric data of von Hippel and Ryde. The

measured data is a fairly smooth fit to the previous values and extends

well into the supercooled range. The real and imaginary parts of the

dielectric constant could be calculated from Im(oK) by assuming IKI 2

is constant with Its value for O°C. The above technique could be used

to measure Im(-K) at even lower temperatures if a very clean cold box

environment was maintained. Values at other frequencies could be

measured I f a suitable cavity was c_nstructed.

|

5.3-3 Absorption Cross-Sections During Phase Transition

In Figure 3,11 of the previous section, a supercooled drop is

observed to crysta111ze. The value of I/Q d dropped linearly in time

from a value for liquid water to that of ice in less than I minute,

This Is the behavior predicted in Section 3.1 for a freezing supercooled

drop. The melting behavior of ice particles is expected to be more

complI cated.

Observations of the melting cross-sections were made by placlng

an ice particle onto the fiber and into the cavity whlle the cavlty was

in thermal equilibrium with the cold box at -20°C. The cavity

assembly was then removed from the cold box and allowed to warm. A

typical example of the behavior of I/Q d with time is shown in

Figure 3.13 for an Ice sohere of equivalent melted diameter O of
eq

1.15 ram. The absorption behaved qualitatively as was predicted In

Section 3.1. At 12:30 minutes the drop began to melt. The value

of I/Q d quicly rose to a maximum at 16 minutes. The absorption then

ilk _1
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began to decay and at 20 minutes reached the meltea value, which was less

than half the peak value.

In order to quantitatively comparethe measurements with theory,

0 a

I/Q d must be converted to the normalized cross-section and
Omeited

some relatlcn must be assumed between time and the mass fraction

M
w (3.24)fw' +M I

To relate fw to tlme T , assume that the droplet temperature Is

zero during melting. Also assume that melting begins at time t o and

ends at time tf. The heat loss from the drop Is

dQ
d-T" const. T(t) (3.Z5)

where T(t) is the time-dependent cavity temperature and the constant

is dependent only on the cavity geometry. From the warming curve in _'

Figure 3.9, it is assumed that the cavity temperature Increases linearly

with time near zero. Therefore

dQ
_-- const, t (3.26)

The change in water mass can be related to the heat loss by the

latent heat of fusion Liw.

dMw l.J.. _tt ().27)
"_'" Liw
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' Since the total mass H + Hi is constant and notln_ that Hw - O at ,;: W "

i time t O

fW(t) Hw(t ) t
" t_ + Mi = const. (t - t O) d(t - t O) (3.28)0 :.

f(t) - const. (t - t0 )2 (3.29)

Noting that fw" 1 at time t- tf , then

(t- t0 )2
= (3.30) .

,- (tf'- to )2

which is the required relation between mass fraction and time.

Figures 3.14, 3.15 and 3.16 show the experimental and theoretical
o

normalized cross-sections a
o as functions of fw for Ice

a melted

spheres equlw, lent melted diameters Deq of 1.15, 1.6 and 2.0 mm.

The general behavior is in good agreement with theory, although the

theory underestimates the absorption cross-sections by as much Qs 25_.

at peak value in the ,_orst case. The discrepancy lo due to the fact

that the Aden and Kerker theory assumes dielectric values for water on a

+ wavelength of 3 cm and a temperature of 18°C. The dielectric constant

at these values is less absorptive than the actual experimental condi-

tions of 2.8 cm and 0°C. The increased absorption, along with slight

deviations from sphericity, could account for the observed difference.

: Tf,e absorption cross-sections for melting non-spherical Ice , .

_, particles were observed, to check for the n,ultlple pha_e b_havlor

predlc_ed in Section 3.1.2. Shaped Ice particles were constructed by
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placing a small water drop on a fiber and immersing the drop In a i

liquid nitrogen bath. After the drop froze, it was removed from the

batll and an additional drop was added. The procedure was repeated

until the required shape was achieved. The major disadvantage of this

method was the inability to create sharp edges due to surface tension

smoothing of the water drops.

Figures 3.17 and 3.18 show examples of ice particles which w_.re

roughly oblate and prolate ellipsoids oriented with their axis of

revolution along the electric field. For the oblate case in

Figure 3.17, four of the five melting phases are visible. The

absorption cross-section started in Phase I like that of an ice sphere.

Once melting began, the cross-sectlon skipped Phase 2 because of the

relatively smooth surface and absorbed in Phase 3 like an oblate

water-coated ice ellipsoid with axes ratio A/B - 1.8. At a mass

fraction of 0.2, the drop began to collapse into Phase 4 of a water-

coated ice sphere and at a mass fraction of I.O the drop ab_._ed like

a water sphere In Phase 5.

In Figure 3.18 an example of a prolate ellipsoid is shown (note

the change in scale). In this case there was sufficient surface

irregularity to show a non-uniform melting Phase 2 up to a mass fraction

of approximately 0.2 where _ne very strong absorption, in Phase 3, of

an oriented prolate ellipsoid wlth A/B - 2.5 prevailed. Phase 3

lasted up to a mass fraction of 0.6 which is artificially high due

to the structural support of the quartz fiber. Above fw " 0.6 the

drop collapsed into the spherical shape of Phases 11 and 5.
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In conclusion, the experimental measurements of the absorption

cross-sections seem to support the theory for water-coated ice spheres

and ellipsoids and the model for atmospheric melting. The observed t

!cross-sections were found Lo be greater than or equal to the theoretical
i

values for water-coated ice spheres. The greatest differences occurred

at the peak of the melting curve, where for one case the theoretical

cross-section underestimated the measured value by 25_. The

difference is thought to be the result of discrepancies between the

: theoretical and experimental values of the dielectric constant.
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CHAPTER4 +

HYDRODYNAMICSOF ACCELERATEDDROPS

'+

The absorption and scattcring cross-sections of water drops were
I

shown, in Chapters 2 and 3, to be strong functions of droplet shape. :
+

In order to accurately predict cross-sections, therefore, it is necessary ,+

to have somemodel of the expected droplet shape. The Cloud Physics
++

community has done a great deal of theoretical and experimental work

on droplet shape and break-up in the quasi-steady-state case of drops
•

falling in the earth's gravitational field. 38"46 In Section 4.1 this

work is briefly reviewed and the generalization to accelerated drops

!

Is made.

_ In Section 1t.2 experimental techniques, employing high-speed , _

photography, for measuring droplet shapes and velocities in the wind ;+

tunnel, are discussed. In Section 11.3 the results of experiments on

drop deformation and stability are discussed.

4.1 HydrodynamicTheoryof Water Drops

For very small water droplets, where surface tension is the

dominant surface force, the droplets assume a spherical shape. Section

11.1.1 discusses deformations from spherical shape as a result of
!

+

hydrodynamic acceleration of the droplets by another fluid. Section c

:_ _1.I.2 presents the oscillations which result from the restoring nature '

of the surface tension. Finally, in Section 4.1.3 the instabilities i

which arise when the surface tension is no longer sufficient to main-

tain the drop are presented.

I
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I 4.1.1 Drop Deformation

!
The steady-state shape of a water drop being accelerated

hydrodynamically by another fluid, in this case air, can, in principle,

be found by balancing all forces acting on the surface. These

forces are •

Surface tens ion

Centrifugal force from internal circulation of the water

inside the drop

Aerodynamic force from air flowing around the drop

Hydrostatic pressure gradient within the drop resulting

,, from accelerat ion

Investigators have attempted to model droplets by including surface

38-42
tension with different combinations of the above forces. The

most complete, although reasonably complicated, method was that of

I Purppacher and Piter in 1970 38:j . They Included each of the above
1

forces, either analytically or semi-empirically, into Fourier expansion

coefficients in elevation angle detailing the change in radius of the

: drop. The results agreed well for quiescent freely-falling drops

with equivalent diameter D less than 5 mmwith the experimental
eq

results of Pruppacher and Beard, 39 Including such second-order effects

l
as the dimple observed on the bot*.om of large drops. For drops larger

than 5 Bin, the Pruppacher and Piter model underestimates the deforma-i

}

: tion somewhat.

1

If it is sufficient to approximate the deformed drop as an oblate i

ellipsoid, which is certainly adequate for calculations of Gans

absorption and scattering cross-sections, then the simpler approach of
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Green 46 provides accuracy equivalent to that of Pruppacher and Piter.

: . Greenls approach, in 1975, was to neglect flow effects altogether and

_ Include only the surface tension and hydrostatic forces. Using this

t approach the diameter of an equivolumetrlc sphere De can be written

• _ in terms of the major-to-minor axis ratio A/B of the ellipsoid and the

acceleration a as
,!

, (_)1/2 = (_)i.,2 [(A/s)2 - 2(A/B)1/3, 111/2: ', Deq (A/B)" l/6 (4. I)

t

_, ,

, where g is the acceleration due to gravity, d is the surface ,

i ,
tension (n.b., _ is also used to denote cross-sections), Pw is the

:I density of water and a/g Is the acceleration of the drop in g units.
t

; Green originally assumed that the drops were falling at terminal

' velocity and therefore a/g was unity. The more general case for any

quasi-steady-state acceleration is included here. Equation 4.1 is

plotted in Figure 4.1 for water at 20°C. ,

4.1.2 Drop Oscillations

When drops are perturbed from their equilibrium shape, surface

' tension acts as a restoring force. This restoring force results In
1

'_ drop oscillations. The oscillations can be characterized by a discrete
I

", t

".t set of normal modes. These modes were first identified by Raylelgh,

'+ 6,47
who identified the allowed frequencies for a sphere ast

+

fn " r2-n(n " l)(n + 2)_ 11/2 (4.2)

" _2pwDeq3<,

:I

i
_ +
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where n is the mode number. The fundamental _ode is n = 2 with a

frequency

= [ t6o ]112 (4.3)
f2 ._2PwOeq3

=

"z_e fundamental frequency is plotted against D in Figure 4.2
eq

for mI llimeter-size drops.

In the fundamental mode the drop is flattened along one axis

initially. A quarter-cycle later, the drop is spherical. After one- :

half of a cycle, the drop is flattened along an axis perpendicular to

the original. At three-quarters of a cycle, the drop is again

spherical, and after one full cycle the drop is back to its original
C

shape.

The validity of the steady-state drop deformations described in

Sect;on 4.1.1 after a change in acceleration is related to the funda-

mental frequency in equation 4.3. For time scales less than one !

fundamental period 1/f 2 the steady-state behavior will not accurately )•

predict the transient drop deformation. For time scales of several

periods the steady-state behavior will be the average deformation in

time. After many oscillations, viscous damping will cause the

oscillatlons to decay and the drop defomatlon will be accurately /

determined by the steady-state solution. ,
: !

It is Instructive to consider the possible effect on the backsca_ter :

._".: cross-section of the fundamental osclllatlon. The change In drop shape !

will cause a change in the backscatter cross-section via the Gans |_

theory. The cross-section will oscillate at the frequency of the

i
tl
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drop oscillation. An example of a periodic axis ratio A/B end the

resulting backscatter cross-section o b is shown In Figure 4.3. :_

The oscillation of c_b is a potential source of doppler noise in °

meteorologlcal doppler radar. The _b oscillation results In

sidebands shifted by _f2 ' as is shown in Figure 4.4. This Is a l
t

source of confusion in that f2 is of the same order as the doppler I

shift from particles moving at meteorological velocities. These i

! 'f_lse sideband signals could cause a broadening in the velocity i

d|stribution function observed in conditions, such as turbulence, which ! +

+ could excit++ drop oscil lations.

4.|.3 Instability and Drop Break-Up I

In the previous section it was indic,3ted that surface tension is

the primary restoring force maintaining droplet equilibrium. When other +

forces, such as the hydrostatic pressure resuitin£ from aerodynamic

acceleration by another fluid, becomes comparable to the surface

tension, then the possrbillty of droplet instability and break-up
+,

must be considered. Drop break, e+is Important _.o models of atmos- j

pherlc precipitation as a limit on the maximum size of drops and, as i ,

Langmuir pointed out] t8 that the small droplets resulting from break-_p

are a major source of condensation nuclei in warm rain, i
4

06servatlons of drop break-up have been made by Hathews and Hason 49 i +

and other_ O on drops _all ing at terminal velocity. Drops were i'+

stable In their ro_+,_ly-oblate shape until they reached a certain +

critical base diameter, where a small concave depres,_lon In the base

deepened until the resulting bag-like shape evcntually burst. This
++
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process is known as the "bag break-up mechanism" and is shown schemati-

cally in Figure 1t.5• Measurements of the maximumstable base diameter

at terminal velocity vary between 6 and 9 mmdepending on factors such

as turbulence•

Theoretically, there are two basic approaches to the break-up

problem• The first is essentially dimensional. It defines the Weber +
'4

number N as the ratio of the aerodynamic pres-_,Jre on the drop to
we ,:

+
the surface tension stress + :

PaAv2 re ]
N = (4.4)

:. we 0

i

where Vre I is the relative wind velocity, Pa is the density of air

and A is the diameter of the base of the drop. For values larger

than some critical Weber number the drops are considered to be unstable.

i The critical value of N has been measured to be of order 10 49,50
we +

' The second theoretical approach, which is also in good agreement

with experimental results, is somewhat more elegant in that it considers

the physical mechanism for break-up• In 1964 Komabayasi et al. 43

recognized that the bottom surface of a large drop falling at terminal

.: velocity was in a metastable state with a heavier fluid (water) being

supported in a gravitational field by pressure over a lighter fluid

(air). The bottom surface would, therefore, be subject to gravitational

or Rayleigh-Taylor instabil i tles when perturbations occurred at the
%

bottom surface.

Komabayasi et al. assumed that the perturbations would occur as

linear capillary-gravitationalwaves and that the critical size for +
!

i .
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drop break-up was when the base diameter A was equal to half the

capillary-gravitational wavelength. For typical values of the surface

tension, the above predicts a critical base :llameter of 8.55 mmfor

freely- t'al 1 ing drops.

The Komabayasimodel was further refined by Klett in 1970,45 who

recognized that, in general, drops flatten with axlal symmetry and,

• therefore, instability should occur when the base diameter A matches

the resonances of circular gravitational waves on the bottom surface. •
51

Following the notation of Yih in cylindrical coordinates, the equation

for the perturbation of the bottom surface of the drop S(t,p $) is

S(t,p,_b) = C Jn(kgp) cos(n_)) exp(ozt) (4.5)

where C is a constant, _ is the initial growth rate of the

instability and J is the Bessel function of nth order. The
, n

elgenvalue k is the wave number of the surface wave and is deter-g .
1

mined by the fol!o_vlng boundary conditions at the drop edge
i

J

Jn(kgp) = 0 P = _A2 (II.6) _.

dJn A
r T " (kgp) " 0 P = T 1_'7) ':

The allowed solutions for the perturbations, therefore, are the

Bessel fun_ 1on modes for a c;rcular membrane. Values of the zeroes .,_

kA

: + are shownfor dlf4_erent modes in Table 4.1.

,,, The growth rate for each mode can be found by balancing forces

Q

|,
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Table 4.1 The zeroe_ of Bessel functions and their derivatives

(kgA), from Abramowitz and Stegun

kA •
_9_
--2

d Jn(X) = 0Zero # Bessel Function # Jn(X) - 0 d-_

1 0 2.405 0.000

2 0 5.520 3.832

1 I 3.832 ! .841

2 I 7.016 5.331
!

I 2 5. 136 3.054

z 2 8.417 6.706 !

1 3 6. 380 _.201

2 3 4.761 8.015

o
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at the lower surface of the drop. Assuming the drop is being accelerated

at a rate a, the growth rate can be written as51
±

2 o(k A/2) a(pw - pa)(A/z) 2
= [ - (kg A/2) 2] (4.8)

(Pw + Pa) (A/2)3 o

Negative values of (2 imply oscillatory solutions for the pertur-

bation while positive values imply instability. The most unstable
%

mode Is therefore the one whose eigenvalue kgA/2 maximizes equation 4.8. _

Once instability occurs, the perturbations grow quickly and the

perturbation function S(t,p,¢} is no longer valid; however, the general

characteristics of the Bessel function origins should be observable

even in severely-perturbed drops. The "bag break-up mechanismI' is,

therefore, considered to be generated from a perturbation consisting

of the mode which corresponds to the first zero of the axisymmetric

Bessel function J0" It should be noted that the J0 n,ode is not

necessarily the most unstable, as predicted by equation (4.1_). This is

due to internal flow in the drop, which has been shown to occur wlth c
,t

axial symmetry. This flow tends to suppress modes which are non-

symmetric. The Jo is, indeed, the most unstable axisymmetric

mode predicted by equation 4.8 for those conditions where 'roag break-up"

was observed.

inspection of equation _.8 indicates that for larger val_s of _

acceleration or droplet sizes, higher-order symmetric modes should :

become unstable and that, if internal droplet circulation can be

suppressed, then non-symmetric modes should also become unstable.
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Some of these modes have, indeed, been observed and are presented in

Section 4.3. _,

4.2 Experimental Technieues for Wind Tunnel Observations of Droplet
b

Shape and Velocity

! In order to validate the extension, to arbitrary acceleration, of

the theories of drop deformation and instability, exper:ments were L

i

carried out to measure these phenomena for various accelerations. Drops

were observed photographically in a wind tunnel. The small drop sizes

and short time scales required the application of techniques of high-

speed stroboscopic photography. The experimental setup and photo-

graphic techniques will be described here.

Experiments were carried out in the MIT low-turbulence wind tunnel

located in Building 17A. The tunnel has cross-sectional dimensions

of I ft. by 1 ft. in the test section and is capable of velocities from

0 to 80 mph. An optically-clear plexiglass test section was construed

to allow photographic measurements. Tunnel velocity was measured by

a pltot-static probe just upstream of the location where droplets

were introduced into the flow. 'i

The photographic setup is shown schematically in Figure 4.6.

Drops were photographed using a shadowgraph technique to minimize

exposure time. The strobe had a maximum intensity on-cencer of 18 x

106 lux at one meter and had a full width at half maximumof either

.8 or 3 IJsec, depending on the intensity setting. The strobe output #

/

was diffused by a buffed mylar diffuser screen which backlit the drops.r,!
i

, The photographs were taken by a 35 ram. camera with a "macro" lens

I i

-I
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; Figure4.6 Schematicdiagt-amof the FhotographicSet-Up.
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capable of ! to 1 magnification. To provide maximum resolution, an !
|

extremely-fine-grain aerial-photography film was used (trade name: I

Kodak Technical Pan) with a high-contrast developer (D-19). The !

resolution combined with this setup was measured to better than 5 mm

for high-contrast objects. t
The strobe was triggered by a signal from a firing circuit. For i

measurements of droplet velocity, two strobes could be fired sequentially i

to provide time of flight information. The delay between strobes could I

be set at 12, 2t_, (;4, 93, or 124 laser, as was appropriate to the

; velocities to be measured, i

The camera was generally operated with the shutter held open (bulb
?

setting) to avoid focal-plane shutter effects. The f-stops were )

determined experimentally and a range of f-stops were shot on each :
!

photographic run. At the beginning of each roll of film, the alignment !

grld on the diffuser screen, used to help determine camera position, was :

, photographed. A millimeter scale was also photographed in the focal

plane prlor to each run to provide length calibration. The photo-

graphic data was anal,,zed by microscopic measurement directly from the

film.

In the experiments discussed in the following section, a stream of

water droplets was inJecte _ ',.,rtically It,to the horizontal flow. The

setup is shown _,; _|9'J_ ./_,. w',ich schematically views the injection

apparatus alon(j the photographic axis. The droplet stream was

generated by the nozzle, shown in Figure 4.7b, which consisted of a

1.27 mmbsveled orifice in a flat plate. The bevel was located on

the water side of the plate to suppress nozzle instabilities which
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Figure4.7a ExperimentalSet-Up to photographdroolet

deformation.
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0 +
0

Figure4.7b Schematicdetailof nozzleused in

deformationexperiment.
C
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caused the stream to wander out of the focal plane. The stream wa_

shielded from the tunnel flow until the midpoint of the tunnel by a

1.9 cm plexiglass injection tube. This was done to avoid flow effects

near the wall.

The nozzle _s run with tap water at .either 15 or 30 PSI and located .!
J

55.5 cm above the bottom of the injection tube. The velocity of the :

drops at the bottom of the tube was measured to be 10.1_ m/see at

15 PSI and 15.6 m/sec at 30 PSI. The mean equivalent droplet diameters

were 1.41 and .98 ram, respectively. The drops were not particularly

quiescent at injection due to the lack of sufficient fall distance

between the nozzle and the injection point for oscillations, generated
J

at the nozzle, to be damped.

The velocity shear below the injection tube was measured by a

movable p_tot-static probe. The results for all velocities were very

sim|lar to those shown in Figure 4.8 for a free-stream velocity of

60 mph. The velocity increases with distance below the injection tube

until, at I cm, the flow velocity is at the free-stream value.

Droplets were observed between 1 and 3 cm below the injection tube i
2

In the photograph region shown in Figure 4.7a. In this reTlon, the

dre_s have not had time to acquire appreciable horizontal velocity.

Droplet acceleration is inferred, therefore, by assuming that the. ,_

horizontal velocity is zero and that the velocity of the relative wind

that the droplet feels, V is the sum of the injection velocityrel '

Vln / and the free stream tunnel velocity UJ

_._

1982022556-095



• 95

" OF pOOR QUALITY

Figure 4•8 Flow velocity versus distance

i: below the ; ,jection tube•

(Free Stream Velocity = 6Omph

"" 60
' E

-i

U

-1 1

20 ,"

I ' ?'

• i illlll

.5 i.o (.5 i.o
Distance Below the InJection Tube (cm)

t

,°

1982022556-096



96

" 2 2 U2
Vre I = Vin j + (4._))

The acceleration a can be calculated from the hydrodlnamic force

equat lmt

I_a = _- ( CdP Vre I (4.10)

where Hw is the mass of the clrnp, A is the base diameter and Cd

is the drag coefficient. The drag coefficients are extrapolated from

the ,measured values _or falling drops and are discussed in more

detail in Chapter 5. The valu _ of R |_', obtained from thew

photograph|tally-measured dimensions of each drop by assuming that

+ the drops are oblate ellipsoids.

4.3 Experimental Results

Orops nbserved in the photographic regio,',, described In Section '.

1t.2, 1 to 3 ¢m belo_ the Injection tube, were found to exhibit t++o

: types of behavior. For sma,I drops or low tunnel velocities, the

drops flattened into oblate ellipsoids with the axis of revolutlen

aligned with the direction of acceleration resulting from the relative

flow velocity Vre I. For !_rger drops or higher velocities, the

drops ilso deformed Initially Into oblate ellipsoids but the ellipsoids

became unstable and the drops broke up. Drops of the first kind are

described In Section _.3.1 and the unstable drops are described In

Section 11.3.2.
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4.3.1 Drop Deformation

The axis ratios A/B of drops deformed into oblate ellipsoids

is plotted against the equivalent accelerated diameter (a/g)l/2D
eq

in Figure 4.9. The deformations are much greater than those which

were predicted by the steady-state theory of Section 4.1. The reason

for the discrepancy can be seen by considering that the time the drops

are in the photographic region is approximately 2 msec. By comparison,

:i the fundan_ntal frequency of the mean size drop (Deq = 1.41 ram) is

205 Hz which corresponds to a period of 4.9 msec. The drops are,

therefore, in the photographic region for less than one-half of a cycle.

The observed behavior of the drops is, therefore, clearly transient

in nature rather than steady-state.

Given the above, some i_teresting conclusions can be drawn from

the data in Figure 4.9. While there _s quite a bit of scatter in the

data due to the transient behavior of the drops, there seems to be a

clearly-defined limit to the translent deformations. This is

indicated in Figure 4.9. This limit is the maximum value of the

oscillating axis ratio AJB of a drop which has suddenly been

accelerated at a rate a. The maximumaxis ratio is just whbt Is
¢

required to calculate the absorption and scattering cross-sections

for drops which experience sudden acceleration due to velocity shear,

such as in turbulen:e or near an airfoil.

4.3.2 Instabi I i ty and Drop Sreak-Up

At tunnel velocities above 40 mph, droplets were observed to "_

become unstable in the photographic region, iSue to the high velocity ,

l

L
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• shear and the resulting acceleration felt by the droplets, higher-order _

_ 31
Bessel function perturbations, predicted by Klett were observed along

with the '*bag break-up" mode observed by others. The theoretical
+

modes are discussed in Section 4.1.3.

At least six different perturbation modes were positively

: Identified. These Bessel function modes are denoted by letters In

Table 4.2 along with the boundary conditions and the eigenvaiues

kgA/2 at the boundary. Photographs of each of the six modes are shown

in Figure 4.10 where the relative wind is vertical in the photographs.

, The axisymmetric modes A and C correspond to the first and second

zeroes of the J0 Besse] function at the droplet edge. The B mode t

corresponds to the first nontrivia] zero of the derivative of J0 on !_ :

the edge. In Figure 4.ll a plot of the Jo(kP) surface is provided I ?

to aid In visualizatlon. "

Node O corresponds to the first zero of the non-symmetric function i :

Jl(kp)cos _. A surface plot of this function Is provided in

Figure 4.12. The periodic dependence with azimuthal angle, cos_,

is clearly visible in the photograph. Hodes E and F correspond to

the J2(kp)cos 2_ _nd J3(kp)cos 3_ functions. They are also most +

clearly discerned by their periodic dependence on _. Hode E is
,.

: twice periodic in one azimuthal revolution, while I_ode F is three times

: periodic in one revolution.

The Instability threshold for each mode can be determined from

the growth rate equation 4.8. It is
?
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a(Pw40- pa)k2 > (kgA/2)2 (4 . Ii)

where kgA/2 is the eigenvalue for the particular mode, listed in

Table 4.2. The acceleration can be found from the force equation

4.10. This yield, a relationship for the minimum unstable base

diameter A in terms of the relative wind velocity Vre I.

A )" 2 [,n.CdPa(2pa.pw) ]1/4 (kgA/211!2 [Vrel]-l/Z (4.12)

Observed values of A and Vre I are plotted for the three
i

asymmetric modes along with the instability threshold (equation 4.12)

in Figures 4.]3, 4.]4, and 4.15. The threshold was calculated

assuming Cd - 1 and Mw was equal to the mean value corresponding to

a 0.98 mmdiameter drop. There is good agreement with the theoretical

threshold as all observed drops exceed the critical base diameter

for their particular mode. It should be noted that the reason that :

the three axisymmetric modes were chosen for analysis was simply ;i

the prevalence of data for these modes, due to their ease of

identification. The non-symmetric modes which were observed also

fulfilled the instability condltion (equation 4.11) but less data was
]

available due to mode identification ambiguities at certain vlewlng

. angles.

'_l In conclusion, the steady-state predictions of drop deformation ' '"

were seen to underestimate the observed values of axis ratio A/B.

A maximum transient value of A/B was detemlned and is shown In

:1
1 "!
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Table 4.2 Surface functions, boundary conditions, and eigenvalues _

of ob3erved modes J

Hode Surface Function Boundary Condition Elgenvalue (kA/2)
m ii i

Jo(kp) JoA - 0 2.405

:, dJ0 .__) _: B J0(kP) d-'_" ( - 0 3.832

C Jo(kP) Jo(-_) - O* 5.520

D Jl(kp)c°s Jl(-_-) " 0 3.832 ',z

E J2(kp)cos 2 J2(--_) - 0 5.136 " _

_tkA_
, F J3(kP)cos 3 do "T' " 0 11.201 ._

i i i | i , i • i ,i i i

* This boundary condition corresponds to the second zero of

the Jo Bessel function

l

I ,
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Figure 4.9. The Bessel function perturbations giving risa to drop

Instability predicted by Klett 1t5 have been observed experimentally.

The perturbed shapes and the conditions for instability were found

to ,_gree wet| with the predicted va|ues_

I
?
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DROPLETTRAJECTORIES

The assessment of the trajectories of droplets driven by another

fluid Is an important part of many fields such as aircraft Icing,

cloud physics and combustion physics. A computer code which simulates

two-dimensional droplet trajectories, either in a freely-flowing fluid

or near an object such as an airfoil, has been written and Is described

in thls chapter. In Section 5.1 the computer code is described. In _

Section 5.2 wind tunnel experiments designed to validate the simulation

are discussod. In Section 5.3 some results of caIculatlors for trajec-

tories near an airfoil are presented. The simulation Is extended

further In Chapter 6, where the microwave heating of droplets near an

airfoil is considered.

,5.1 Computer $lmu|ation of Droplet Trajectories

The first attempts to calculate droplet trajectories In f_owfie|ds

perturbed by objects were made In 1940. Glauert 53 studied trajec-
c

torles near circular cylinders which became the basis of Instrumentation

54
to measure the liquid water content of clouds. Kantrowltz studied

traJectorle,_ and their relationship to aircraft Icing, Both Glauert
\

and Kantrowltz integrated the droplet dlfferentlal equation of motion

analytlcally. The approximations required to do thls limited the use-

fulness of the solutions. In 19115, Langmulr and B|odgett 55 developed

a more general approach for the trajectories near slmp;e geomtrical

shapes which required the use of a differential analyzer. "

1982022556-110



110

The technique of iteratlvely solving the droplet equations of

motion, by finite difference techniques, applicable to arbitrary two-

5G
dimensional flow fields, was proposed by Bergrun in 1947. The

computations were done by hand, which made calculating even one \ :

trajectory a major effort. In 1953 a o-oup led by Brun and Rlnaldo

developed an analog computer which mechanically integrated droplet

57-59
trajectories. They computed trajectories near cylinders and

3

NACA65,-200 series airfoils. These analog computations, while

impressive, were limited due to the difficulty in modifying the programmed

flow fields. _

The calculation of droplet trajectories, by the it_rative solution

of the droplet equation of motion, Is well-suited to the capabilities

of modern digital computers. Very little work has, however, been done

in this area. Those codes which do use digital computers have generally

been developed by aircraft companies privately and are proprietary• :

A computer code to calculate droplet trajectories In an arbitrary

two-dimensional flow field has been written and Is described in this

section• Section 5.1.1 discusses the droplet equation of motion. In

Section 5.1.2 the Iteration algorithm is presented with a flow chart of

the code. Finally, in Section 5.1.3 a discussion of the appropriate

drag coefficients, to be used for water droplets, is presented.

5.1.1 Droplet E,.quations of Motion ,

The equation of motion for a droplet being driven by another fluid _

can be written from the hydrodynamic drag equation as

Cd ._.
_.1 " T PaA_lu- _1(_ " v') (5.1)

r
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Where a and v are the acceleration and velocity vectors of the drop, 't

u is the velocity vector of the fluid, _ is the. mass of the drop,

- Pa is the density of air, A_L is the area of the drop perpendicular :
\

to the relative wind and Cd is the drag coefficient of the drop. It

is noted that

v_l - I_- _1 (5.2)
\

is the magnitude of the relative wind felt by the drol_ as was discussed
,+

|tl Chapter 4. The drop mass is

D .+

. .. - (5.3)
i

:+

where Oeq Is the diameter of an equivolumetric sphere and Pw is the ",i

_ density of water.

In order to simplify the use of equation 5.1, it is assumed that

:1 the area Aa. of the droplet is the value for an equivolumetrlc sphere +

and that any deviation from sphericity wlll be included in the drag

coefficient Cd. Therefore

:1

B

A_- lt(-_) 2 (5.4) .+
2

,! Combining equations 5.2, 5.3, and 5.4 with equation 5,1 yields :

i Pa Vrel (_. _ (5.5)
"!i ; " 3 Cd _ Deq
,I
+i

1
0

&
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The Reynolds number Re for droplets is defined as: : .

P
a (5.6)Re--_ OqVr_!

where p is th: dynamic viscosity of air plotted against temperature
60

in Figure 5.1 from the values in the Smlthsonlan Meteorological Tables.

The equation of mrtlon (equation 5.5) can be written in the simplified

; form as]

i

_ CdW
_- (-,-_) K]-- ('_- v_ (5.7)

where

P

I; Ka . _ _'w Oeq2 (5.8)

,,,

which is constant over a particular trajectory.

Equation 5.7 Is the equation of motion used in the trajectory code.

It has a form similar to the equation of motion first proposed by
CdRe55

Langmuir and BIodgett. The coefficlent (--_--) is presumed to be

a function of the Reynolds number and is discussed in section 5.1.3;

K Is constant (assuming O remains constant); and (_-_ is the
a eq

relative wind felt by the droplets.

:1
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5.1.2 Iteration Algorithmt
i

A flow diagram for the iterative computation of two-dimension.al

droplet trajectories is shown In Figure 5.2. Three groups of Input

parameters are required. They are the flow field, the Initial droplet

conditions and the atmospheric conditions. The code calculates

trajectories for an arbitrary known two-dlmensional flow field. The

velocity field _(x_), where x is position, must be Input either through
+;

! flow equations or by means of tabulated values. If trajectories near

_ bodies are being calculated, then the position of the body surfaces must
4
t be included.

i The Initial conditions for the droplets are the equivalent ,tlameter
O the Initial position X'_o and the Initial velocity vO. Thei eq'

atmospheric temperature and pressure are required to compute alr • +
I ,

I density, viscosity, and K i

iI -
a ,

Once the initial conditions have been determined, the equation of

I n_)tlon (equation 5.7) ls solved at the Initial position. The velocity
.4b .ai

v and I_sitlon x are then Incremented one time step At by the first

order Euler Integration equations

.Ib .Jb

xi = v i At + x I (5.9) :

vi+ I = a i At + v i (5.10) t

q

t

The value of At was taken to be I0 mlc_seconds In most of the

simulations, although it could be varied IS necessary.

Once the _sition and veloc!ty have been Incremented, the code

checks for hydrodynamic stability of the drop (as determined by the!
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Figure 5.2 Flow diagram for trajectory code.
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stability conditions in Chapter 4) and for collision with the body. If , :

either of the above conditions occur, then the code kicks out of the
t

Iteration loop and outputs trajectories to that point. If the drop

_emains stable and no collislons occur, then the code o/cles back and

: calculates acceleration at the new droplet position. The code then

progresses through the loop. Values of droplet velocity and

acceleration can also be output along with the trajectories. Additional

forces such as gravity can be Included in the acceleratlon equation.

5.1.3 Drag Coefficients

In previous calculations of droplet trajectories, Investigators have

53 54 ,
used a variety of drag coefficients. Glauert and Kantrowitz assumed

Stokes (viscous) flow around spherical droplets. Langmulr and Biodgett 55

• observed that at aircraft velocities and meteorological droplet diameters,

Stokes' law does not hold. They proposed using drag coefficients

measured for solid spheres.

i In order to check the validity of the Langmuir and Blodgett drag '
CdRe

! coefficients Cd, or equivalently (2--_--), the code was used to compute '!

the terminal fall velocity of drops in the earthts gravltatlonal field.

The results are shown In Figure 5.3, along with the well-accepted

experimental results of Gunn and Klnzer. 61 The Langmulr and Blodgett

: coefficients predict a higher terminal velocity than is observed

experimentally. The reason for the discrepancy is that the Langmuir
!

and Slodgett coefficients neglect such effects as drop deformation and i

the Increased drag due to turbulent eddies downstream of the drop. These

effects Increase Cd and reduce the teminal velocity.
l ,,

In order to Improve on the Langmuir and BIodgett coefficients, it

I
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was decided to Invert the Gunn and Kinzer experimental results to

determine a set of empirically modlfled drag coefficients. The modlfled

CdRe
values of (-_) are plotted against Reynolds number In Figure 5.4

along with the Langmuir and BIodgett values. The ex_rlmental values -

cut off at Re - 3500, due to drop break-up. It is assumed that the

CdRe
values of (--_) can be extrapolated to higher Reynolds numbers.

< Therefore, from Figure 5.4

i

CdRe
= 1.(;99 x 10-5 (Re)l'92 Re > 3500 (5.11)

Using the modified drag coefficients, the terminal velocity was

'_ calculated by the code and Is plotted In Figure 5.5. The values, as

expected, agree well with the Gunn and Klnzer data for the atmospheric

conditions under which the experiments were performed. The values of
t

1080 mb pressure and 20°C are typical surface conditions. Figure 5.5

also Includes terminal velocities calculated for typical Icing condltions

of 750 mb and O°C, where the lower air density causes less drag and a

resultlngly higher terminal velocity. The above modified drag

coefficients have been Incorporated into the trajectory code. For

Reynolds numbers greater than 3500, equation 5.11 is used. For

Reynolds numbers less than 3500, the code Interpolates between tabh_d

CdRe
vmlue_ of (--_--). The values which have been used.ere I istad In

Table 5.1 for reference.
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Table 5.1 Values of (Cd Re/24) as a function ,

of Reynolds number.

,a

• Re Cd Re/Z4 Re Cd Re/Z&
- i

0.00 1.00 68.7 3.6E4 i
i0.05 1.009 98.? 4.409

0,i 1.013 134.0 5.170 i
0.2 1.037 175.0 5.943 I0.4 1.073 __.0.0 6.683
0.6 1.103 269.0 7.520
0.8 1.142 372.0 _.480
1.0 ].176 4_3.0 11.47 _ '
1.7 1.201 603,0 !3.69
1.4 1.225 731.0 16.08 !
1.6 1,240 066.0 1B._6 "
1.8 1.267 1013.0 21.27 _
2.0 1.285 1.164.0 24.01 I
2.5 1.332 1313.0 27.03 1 -

3.0 1.374 1461.0 30,32 i
3.5 1.4_2 1613.0 33.0140 14 7 1 64.o 37.56

i 5.0 1.513 1915.0 4!.49 i
I 6.0 1.572 206&.0 4_,.54 _ ,

j O.O 1 678 _11.0 50 12 ]

I 10.0 1.782 2357.0 54.83 ,12.0 1.901 2500.0 59.89 :
, 14.0 2.009 2636.0 &5.24

16.0 2.109 ..._?_..0 71.03
18.0 2.198 2905.0 76.86
20,0 2.291 3033.0 83,41
25.0 2.409 3164.0 g_'.TB
30.0 2.6?3 3293.0 o_.05
35.0 2.051 3423.0 103.69
40.0 3.013 3549.0 111.05 "
50.0 3.327
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5.2 Wind Tunnel Validation of Computer Trajectories _

The computer-genera_d droplet trajectories have been checked by

comparison with wind tunnel measurements of droplet velocity. In
• _

• Section 5.2.1, velocity measurements of droplets injected Into a freely-
<

flowing wind tunnel are compared with predicted values. In Section

: 5.2.2 droplets are observed just upstream of a cylinder where the

flow field ls spatially varying but well known. The measured

velocities are compared with the predicted values and 9ooJ agreement is

obtai _ed.

5.2.1 Droplets Injected into a Uniform Flow •

In order to verify the computer-predicted trajectories, droplets

were observed in the set-up shown in Figure 5.6. Droplets were

InJected Into a freely-flowing tunnel perpendicular to the. flow.

Droplet veloclty components along the tunnel axis were measured

125 cm downstream of the injection site. The measurements were made

by the double strobe photographic technique discussed In Section 4.2

and the wlnd tunnel was the HIT I ft. x ! ft. facility described In

that section.

The observed droplet velocities for three values of the tunnel

free-stream velocity (45 mph, 60 ¢pl., 75 mph) are shown In Figure 5.7

along wlth the computer-calculated values. There Is good agreement _

over the observed 0.15 to t.O mmrange of equivalent droplet diameters.

At the observation site the small droplets, due to their low Inertia,

are close to the free-stream velocity, while the larger droplets are

slower and still accelerating. The discrepancy between observed and

predicted values of velocity are attributed to difficulty in measuring "
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Figure 5.6 Experimental set up for droplet velocity
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D , slight variations in the tunnel velocity, and perturbed Initial
eq

• conditions due to droplet break-up or other InJection effects.

i •
i

5.2.2 Droplet .TraJectories Near a Cylinder t
!

In order to confirm that the comptuer code accurately predicted I

trajectories, In regions of spatially-varying flow, observations of

droplet velocity just upstream of a cyllnder were made in the wind

tunnel. A cylinder was chosen because the two-dimenslonal flow ahead

of a cyllnder Is well known to have a simple analytical form.

An example of the trajectories generated by the code Is shown In

Figure 5.8. In this case the cylincler had a 10 canradius and the ?
!

free-stream velocity was 60 m/sec flowing to the left. Four droplets

with diameters of 5, !0, 20 and 40 microns were Incident on the cylinder
tA

from a position 1.25 cm above the stagnation streamline. The effects

of Inertia can be clearly seen as the smaller droplets are turned by

the flow, while the tt0-mlcron drop continues on and Impacts the

cylinder. The effects of Inertia on the Impingement trajectories wlll
I

be discussed further in Section 5.3.

The experimental set-up used to measure velocities near the Ji _

cylinder was very similar to that described in Section 5.2.1 end Is

shown in Figure 5.9. The photographic region was centered above the

stagnation streamline ahead of the cylinder. TraJectories ahead of :_

two cylinders of diameters 11.25 and Z,4 an were observed, The

cylinders were painted black to minimlze stray reflections In the

photographs. The free-stream velocity was varied from 1t5 to 75 mph.
f

Droplets were injected perpendicular to the flow 125 an upstream of the

f,

i "
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Figure 5.9 Experimental set-up for droplet

ve'acity measurementsahead of

: a cylinder.
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cylinder axis and the velocities were measured by the double strobe

: technique.

Several hundred droplet velocities were observed and compared to

the computed values. The measured and computed drop velocltles were

Found to agree wlth 3 standard deviation of less than _; of the predicted

veloci ty for accurately-photographed droplets.
t

As •n aside, it was observed that when I•,ge droplets impacted

th• cylinder, they splashed In rather constant patterns. An •xample

is shown in Figure 5.10•. The result of the impact of a large drop

i
was • collection of smaller residual droplets with vel_cltles of order I

one-tenth of the free-stream veloc|ty directed radially _•y from the i
I

point of first contact with the cylinder. Splash patterns of this
s

sort •re thought to be the cause of the double-horned Ice build-up _

sk•tched in Figure 5.10b observed on alrfoils under certain icing

condl tions.

: In conclusion, the experimental evidence supports She results of

: the computer simulations. The code, can, therefore, be applied to

other situations of Interest with some confidence In the results.

5.3 Simulation Results Near the Leading Edge of an Airfol,.I

In this section, results of droplet trajectory computations near

• n airfoil •re presented. Th• airfoil I••dlng edge is slmul•t•d by

• two-dimensional half body, an example of which is shown In Figure

5.11. The half body was chosen because it closely resembles the

front of an airfoil and the velocity field equations have a #•rticularly

simple form. If the flow is assumed to be inviscid, then the velocity

I
I

J
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Figure 5.10a Photograph of a

large drop Impacting the cyl-

Inder surface. '_
/
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Figure 5.105 Sketch of • "double horn" ice t ,_tion.
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Figure 5.11 View of the 2D half body.
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; potential function e is simply the sum of uniform flow in the x-
" 62
' direction and a source at the origin _

: 4 x2 "4_(x,y) = U (x + xs In + y2) (5.12)

where -x Is the x coordinate of the leading edge
' S

,z

x - h/_r (5.13)S

_.L

;_ where h is the half-thickness of the body. The velocity v is

related to _ by

xy) - (x,y)

, The half body equations can be used to simulate droplet impingement

onto an airfoil• The only weakness Is the assumption of an 0° angle

of attack _ implicit in the half body flow model. Effects such as

droplet Inertia and droplet collection efficiency, whlch are weak

functions of _, can be adequately investigated. In order to Itudy "

effects which depend strongly on _, the particular flow field of

interest must be inserted in the code.

In Section 5.3.], some two-dimensional Impingement trajectories

L
are presented. Some results on droplet collection efficiency, and

their effect on the Impinging mass distribution function, are discussed.

In Section 5.3.2, the effect of the airfoil on the kinematics of

droplets is studied. Finally, In Section 5.3.3 soma additional

, _ simulations are presented which demonstrate the flexibility of the model.

• 'k_ •
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5.:3:1 Two-Dimensional Impingement TraJectories

In Figure 5.12, the two-dlmenslonal trajectories are plotted for

droplets of various equivalent diameter. The effect of droplet inertia

is apparent, as it was In the case of the cylinders In Section 5.2 • !

Sma|l droplets are swept by the alrfoi], while the inertia of the large

drops causes them to resist change in direction and they Impact the

airfoil• In the example in Figure 5.12, the free-stream velocity was

60 m/sac to the left, and the body thickness was 20 ca. The atmospheric

conditions were typical icing values of 750 mb pressure (equivalent

altltude approximately 10,000 feet), -lO°C temperature, and gravltational

acceleration was neglected. In the following, these conditions wll!
t

be assumedunless otherwise noted. '

In Figure 5.13, the tangential trajectory to the half body is

drawn for a 20-micron droplet. The Initial vertical position of the

tangential trajectory defines the height of the Impingement window

; hi (l)eq). The Impingement window is the zone in which, for a given size, :

all droplets Impact the body. For the symmetrical case of the half body, .

the Impingement zone is centered around the stagnation streamline.

Therefore the height of the impingement wlndow hi (Deq) is Just twice

the separation of the tangential trajectory and the stagnation streamline

well ahead of the body. For non-symmtrlcal cases, the h$lght of the

impingement window Is the Initial separation between the upper end

lower tangential trajectories.

In Figure 5.14, half the height of the Impingement window is plotted

against Oeq for a 20-cm thick half body. The free-stream velocities

studied were I10, 60 and 80 m/sac. It is interesting to note that

1982022556-134



L

134
. +

1

I (SIINNN3 BI) SIXV IV31_3h .

1982022556-135



135

J "
_1 omcl._ALpaG_is

" OF poOR QUALITY _ "

_ '

• (SIINn N3 BI) SIXV qV3II_13^

1982022556-136



136 ORIGINALPAGEIS
OF POORQUALITY

FIGURE 5.14

IMPINGEMENT WINDOWVS. EQUIVALENT DIAMETER

ft.88"

g, I I ) I t I
! I. 25. 5B. 75. 1gg. 125. 15B.
J
1

; EOUIVALENT DIAMETER (MICRONS)

1982022556-137



OR_C.,"--;"-'vr.,.,-

1.37 OF Poor QUALITY

droplets with Deq less than I0 microns are always swept by the half

body at these velocities. Above I0 micro.., the height of the Impinge-

ment window Increases roughly linearly wlth diameter up to !00 microns

where the hi(D q) begins to taper to the asymptotic value of 10 cm.

This linear behavior was also nbserved by Brunet al. in their

simulations. The slight Irregularities In the h I curves are not

physical. They are a remnant of the discrete nature of the sampling

algorithm and therefore should be Ignored.

A series of trajectories, with varying Initial vertical posi_ions,

are shown In Figures 5.15 and 5.16 for 20 and 40 micron droplets. ,
t

The limit of the impingement window Is also shown. The 20-micron i
!

droplets are clearly more influenced by the flow than their 40-micron , _

o0unte rparts.

dnc(0eq)The differential collection efficiency of the airfoil dD
eq

Is the ratio of number of droplets of a given size actually impacting

the body to the number of drops of that size Initially In the

volume swept out by the body. It can be written In terms of the height

of the Impingement window as

L

dnc(Deq) h.i (Oeq) _:. - ,, (5.15)
dO H

eq

i
where H is the thickness of the body. The differential collection ,

efficiency Is related to the total collection efflcler,_/ rt c by

Integrating over the droplet size distribution f(_q)_'-1 L

' I" chic l ;
nc" J  qeq f(oeq) doeq (5.16) '0

t
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: Some typical mid-cloud distribution functions are shown in

Figure 5.17. For cumulus clouds, the functions are fairly sharply

: peaked. The mean droplet diameter is of order 20 microns and tends

to Increase with the size and age of the cloud. Stratus clouds tend

to have broader distribution functions with similar values of the mean

droplet diameter. An approximate form of the cloud distribution

function is the Khrglan-Hazan dlstribution6

Deq2f(Oeq) - const, exp {3 Deq/Deq } (5.17)!

i
i
! where _ is the mean effective droplet diameter.
J eq dH

C

The distribution of impinging mass d_- can be calculated from
eq

1 the size distribution function, the differential collection efficiency

and the volume of the drop.

dHcI I ".

(0eq) f (Oeq)
; d-_eq - Vnc (5.18)

Combining equations 5.17 and 5.18 and noting that tl c is roughly

proportlonal to Oeq for cloud-size droplets, and that the volume V

Is proportional to 0 3 yields:
eq

dHc Oeq6- const, exp (30eqlOe-'_q (5.19)
_, eq

An example of the Khrglan-Hazan dlstributlon function and the impinging

mass distribution function is shown In Figure 5.18 for equal

to 20 microns. It is interesting to note that the peak value of the

!I '
t
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mess distributlon function occurs at 40 microns, which is twice

the mean diameter _'- in the cloud. Indeed, the extreme value
- eq

condition for equation 5.19 yields

- z 5-- (5.19) '_
Oeq I dR¢ eq

maxdT
eq

For raindrops, the differential collection efficiency is approxi-

mately unity. The accepted slze distribution function for rain

6 64Is the Marshall-Palmer distribution 3 further refined by Atlas.

f(0eq) - const, exp {-3.67 Oeq/Oe-'_}q (5.20)

This results In an impinging mass distribution of

dR

c 3 exp {-3.67 -- } (5.21)
dT " const. Deq Oeq/Deq

eq

with the mean value of 0 for rain being of order several milli-eq

meters.

?

/

5.3.2 Kinematics of Droplets on the Stagnatlon Stream, ne

The general effect of the half body flow field on the kinematics

of impinging droplets can be observed in the case of droplets which i.

flow on the stagnation streamline. Droplets on the stagnation
+

streamline are particularly conven!ent, In that the kinematics are .

assenti al ly one-dimensional.

In Figure 5.19, the acceleration of droplets is plotted against

1982022556-144
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FIGURE 5.1g

ACCELERATION VS DISTANCE ON STAGNATION STREAMLINE
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distance ahead of the half body, for equivalent diameters of 5, 10, 20

. and 40 microns, for the flow conditions listed in Section 5.3.1. The

ac_leratlon, which is actually a deceleration in that it acts to slow

the droplets, is the result of the slowing of the flow due to the pressure

gradient ahead of the body. Droplets flowing towards the airfoil begin

to feel some acceleration 30 to 40 cm ahead of the body. The

acceleration increases until either the larger drops (20 and 40 microns)

impact the body, or the smaller drops (5 and 10 microns) slow to

approximately the flow velocl ty a few cm ahead of the body. The

maximumvalue of the acceleration is on the order of several thousand
r

g units.

The high values of acceleration that the droplets are subject to,

result in two major effects. The fi rst i_ hydrodynamic, in that the

effective accelerated diameter (a)l/2_ Deq , disc,'ssed in Chapter 4,

is Increased considerably. The value of (_)1/2 is plotted against
c

distance in Figure 5.20, for the droplets described above. The

peak values of 40 to 55 are observed, Implying that factors such as

drop deformati on and poss ib iy i nstab i ! i ty wi 11 becume Important.

it should be noted that the droplets in the example in Figure 5.20

remain below the instability threshold for (g)l/2 Deq of
approxi mately

I on.

• The second effect of the strong acceleration Is to increase the

: cMell time of droplets In the region Just ahead of the body This '

can be seen In Figure 5.21 where the droplet velocity Is plotted. The

droplets are seen to slow appreciably several centimeters ahead of the .:

airfoil• The dwell time and, assuming a uniform external droplet
• • %
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FIGURE 5.21
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_, field, the droplet concentration, wlll therefore Increase In thls i

region. I

• }

It should be noted that the observations made for droplets on the

= stagnation streamline are by no means limited to that special case. t
I

Droplets in the general region ahead of the airfoil should exhibit
' i

similar behavior, although the direction of acceleration will be; i

variable. In fact, the zone of n,3ximumacceleration Is actually located

slightly off the stagnation streamline Just ahe. of the body.

5.3.3 Additional Simulations I

In thls section, some additional simulations are presented to

Illustrate the flexibility of the code. The first case of Interest

was that of a large drop Impacting the body. As was noted in

Section 5.2, the large drop splashes Into a collection of smaller

droplets with velocities of order one-tenth of the free-stream velocity

directed radially away from the po&nt of first Impact.

The splash was simulated by assuming that the point of Impact was

the stagnation point. Simulation droplets were Initiated at this

point with Initial velocities of 6 m/sec (one-tenth of the 60 m/sac

free-stream value). The angle between the Initial velocity and the ',

stagnation streamline was varied from 0° to 90° . Examples of the

resulting trajectories are shown In Figure 5.22 for the cases of 30° , '

60° , and 90° . For the 60° and 90° trajectories, the droplets ere

clearly swept away by the flow. For the 30° traJectories, the droplets

return back and Just grazes the body approximately Iom along the body.

The origin of the double-horned Icing shape shown in Figure 5.|Ob

l
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can be Inferred from the simulation results. If the droplets don't :

freeze Immediately on impact, most of the residual splash droplets

_ wlll be swept away until some Ice begins to form off the center line.

The splash droplets, which are movlng essentially tangentlally to the

body, will Impact at thls point and the horn will begin to grow.

The second horn is simply a manifestation of the flow symmetry about

the stagnation streamline.
• Another case of Interest Is the effect on droplet trajectories

of blowing air out the leading edge of the airfoll. Figure 5.23

shows a series of 40-micron trajectories with and without blowing.

The blowing velocity at the leading edge is 36 m/sec in this case,

and the free-stream velocity Is 60 nVsec. From Figure 5.23 It is

clear that It is indeed possible to prevent droplets of a given slze ._

from Impinging onto an airfoil by blowing. The feasibility of ice

prevention by such a technique requires an assessmant of the aerodynamic

penalty, if any, resulting from such blowing and an assessment of the

power requi red.
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CHAPTER6

COMPUTERSIMULATIONSOF DROPLETHEATING

The problem of heating water droplets by microwave radiation in the !

vicinity of an airfoil is studied in this chapter by means of a computer !
l

simulation. The simulation is, essentially, an amalgamation of the i
!

r£sults of the preceding chapters. In Section 6.1 the structure of _:he ii
T
; £

co_ is described. Section 6.2 discusses the model used to maintain

droplet energy balance in the simulation. Finally, in Section 6.3,

• some results of the droplet heating simulation are presented, it

6.1 Description of the Simulation

_n this section the droplet heating code is described. The code was

written primarily as a means for obtaining analysis and design criteria.

for aircraft anti-icing schemes which employ microwave preheating of

water droplets prior to impact. As a consequence, the results of the

c_de presented in ths chapter center around droplets which are heated by
J

microwave fields as they flow in the vicinity of an airfoil. The code

is, actually, more general than this specific application and could just

as easily be applied to problems such as the extinction of solar radiation

by cloud droplets or the attenuation of radar or communication signals in

the atmosphere,

A flow diagram of the code is shown in Figure 6.1. The primary

structure cf the heating code is the droplet trajectory code discussed in ._

Section 5,1. Two sections are added to the trajectory code to a_count

for droplet heating. The first accounts for the heating effect of the

microwave field by caiculatlng the Poynting flux at the droplet Iocatlo_.,
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Figure 6.1 Flow diagram for heating code.
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' given some model of the electromagnetic field and calculating the

droplet absorption cross-section.

The cross-section is calculated by First assuming Rayleigh

absorption (equation 2.17). The code then checks for drop deformation

and other non-Rayleigh effects and corrects the cross-sections by the

multiplicative Factors discussed in Sectr,,n ).!.1. The Following non-
:

Rayleigh effects are included in calculating the absorption cross-section
i
|
- 0 a

: large droplets (Mie theory)

non-spherical droplets (Gans theory)

phase change effects

thermal effects on the dielectric constant

In the above, the magnitude of the drop axis ratio A/B is taken to be 50_;

of the maximum transient deformation limlt discussed in Section 3.3.

Given the above, it ls possible to calculate the rate of absorption

' of microwave energy by the drop as ,

t

dQrf
d--i"" o s (6.11a _

6

where S is the magnitude of the Poyntlng vector at the drop location.

The second additional section In the heating code calculates the

Incremental temperature change over one time step &t by considering

the total heat budget of the drop, Including such effects as evaporation,

miring, diffusive heat transfer and ventilation, along with the

microwave heatlng of equation 6.1. The heat budget of a drop is :

discussed in more detail in Section 6.2.

Consideration of the droplet heat budget yields the rate of change

of such droplet parameters as the droplet temperature, Td, the droplet
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mass,M, and the droplet mass fraction, f. These parameters are

integrated at each time step At by the Euler integration scheme
i

: discussed in Section S.I !

dTd
Td,i+l " (-_)i At + td, i (6.2)

° dM :
" Mi+l " (_)i At + Mi (6.3)

fw,i+i " (-_)i At + fw,i (6.4)

The droplet parameters Td, M and f are therefore free-running

parameters in the heating code.

The initial value of Td is generally assumed to be the ambient

temperature T . The initial mass fraction and droplet mass are input: a

: parameters in the code. The droplet mass is represented by the diameter

of the water sphere of equivalent mass Deq.
0 _

- ' (..s) ,:

As in the trajectory code, the droplet parameters and position are ,

Incremented through the loop until the droplet either Impacts the body,
)

misses the body or becomes unstable.
2

The code parameters which will be assumed in the following, unless

otherwise noted, are :'

Body - half-body 20 cm thick

Free Stream Velocity - 60 m/sec

Atmosphere = Icing conditions (750 mb, -20°C) ,
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The electromagnetic Field model and the coordinate system used In the

code are shown in Figure 6.2. The field consisted of a bound surface

wave which propagated along the leading edge of the airfoil perpendicular

to the Flow. The field strength was exponentially decaying with

distance ahead of the airfoil and had a cos20 angular dependence

centered about the stagnation streamline. The field direction is assumed

to be perpendicular to the radial direction in Figure 6.2. Therefore

we 2

I_1- E0exp{-(r- ,s)/¢} cosz (_0) (6.6)
where

8 - arctan x (6.7)
Y

_x 2r ,= + y2 (6.8)

00 Is a reference angle defining the angular width of the Field,

E0 is the maximumelectric Field strength at the surface, Z Is the

exponential decay length of the Field and xs is the x coordinate

of the leading edge of the half body.

On the stagnation streamline, the electric field simplifies to
.?

I_'1-E0 exp {-(x- Xs)/(:} (6.9) "

whlch is the exponential decay associated with a planar dielectric

surface waveguide. 15 The exponentlation length _ of such waveguldes
1'

can be control led by the thickness of the dielectric coating. The

effect of varying the above electromagnetic field parameters and the

wavelength X is studied in Section 6.3. :'

l
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' Figure 6.2 Coordinate system used for the electromagnetic :

field model.
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• 6.2 Droplet Energ_ Balance

In order to calculate the rate of change of such droplet parameters

as temperature, Tj droplet mass, _:. and mass fraction, _ it ls necessary

to observe the heat budget of the drop• The heat budget is \

dQtddQr dQrf d%!t + (6 IO)d--_ " -'_'-+ + dt -at'-

where

dO.t
d-_-" m total heat change in drop (6.11) ::

dQrf
d-"_- = heat change due to radiation (6.12)

- heat change due to evaporation (6.13) :

dQmelt _'
_t - heat change due to melting (6.14)

dO.td
m heat change due to thermal diffusion (6.15)

The total rate of change of heat is related to the change in

droplet temperature by the speci flc heat at constant pressure

(Cp - I cal/gm°C - 4.186 x I07 erg/gm°C) and the mass N by

dQt dT
m CpM _ (6.16) _

The rate of change of heat due to radiational heating was written In ..

$ectlon 6.1 as

dO,rf
d-'T-" °aS (6.17)
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: where oa is the absorption cross-sectlon of the drop and S is the • ,:.

Poynting flux.

': The change of heat due to droplet evaporat;on is
t

dt - Lwv _t'dM" Lwv fv (d_) (6.I8) .,
0 :.

where

Lwv - the specific heat of evaporation of water

(L v - 600 cal/gm - 2.5 x I0 IO erg/gm)

dM
_- - the rate of change of mass due to vapor diffusion

: dM dM ":"
: (_t)O - the value of _ for a stationary drop

Y" m the ventilation coefficient which accounts For the enhanced
• V "

vapor diffusion due to air flow around the droplet

dM
"r The value of (_tt)O may be found by solving the steady-state

, dl ffusion equation

_Pv

: = Dv  Zpv (6.18)

where Pv Is the water vapor density and Dv is the vapor diffusion

:r coefficient. Calculating the rate of flux of water vapor through some

droplets 6closed surface around the drop yields, for spherical

J D

_1 " 4_Dv(-_"q') ( " (6.20) "
i (_tt) 0 Pv,a Pv,d ) ,:

:i

where Oeql2 Is the radius of the drop and Pv,a' Pv,d ere _he

awnblent and droplet surface vapor densltles, If the effect of curvature

on Pv,d can be Ignored and the amb!3nt atmosphe_ is saturatef wlth

J

I " _ ' _-_'_"""
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. water vapor, then P and 0 are simply the saturation vapor
via vjd ,_

pressures over water and d¢,_-nd only on temperature appropriate to the

pressure to be found, Values of saturation vapor pressure versus

temperature are plotted in Figure 6.3 from the Smlthsonian Heteorological
6O

Tables.

Values of the ventilation coefficient fv' which is the increase in
,|

vapor diffusion due to airflow by the drop, have been determined

empirically by Beard and Pruppacher 65 to be _

: f- = 0.78 + 0.308 N 113 Rel/2 (6.21)
V SC,V

where Re is the Reynolds number and Nsc,v is the Schmidt nanber -

sc,v PaDv (6.22) _

p is the dynamic viscosity of ai r and Pa is the density. The value
66

r' 0f the vapor diffusion is taken to be

2___a__3OK)l.gh1013 .-ab) (6.23)Dv " 0.211 ( ( Pa

,t

where Ta and Pa are the _r_ient values of temperature and pressure,

The heat loss from the drop can be found by noting that the thermal i .:

and vapor diffusion equations have identical form. Therefore, by _ "
?

analogy to the vapor diffusion case,

_ dQtd D
- Th lllTka(-_) (Ta - Td) (6.24) i ,

; !

where ka is the thermal diffusion coefficient taken to be _ :.

: 2.4 x 103 erg/cm sec°C in air and "{rh is the heat ventilation

coefficient, which ls taken to be equivalent to _v fol|owing the +
6 _

example of Pruppacher.
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The changeof heat due to meltingof icewithin the drop can be ,:

related to the change in mass fraction fw by the latent heat of fusion

Llw (Liw = 80 cal/gm = 3.36 x l0_ erg/cm)

df
d%el t w

dt = LiwM_ (6.25) :

In the heating code, no meltln 9 is assumed to take place unt'l the

droplet is at or above O°C, at which point the temperature remains

constant and all excess goes into melting ice until f becomes unity.
w

By considering the above, it is possible to write the rate of

change equations for the various parameters of interest

Td¢O ";

dTddt" --CIM[°aS + 4_r(Oeq/2) Tv(Lw Ov(Pv,a - Pv,d) + ka(Ta " Td)) ] '
P (6.26)

Td =0

dfw .i [o S + 41T(Deq/2) _(LwvDv(Pv, a Pv,d) + ka(Ta Td))] := Liw a " "
(6.27)

dM

" 41T(Deq/2)Tv LwvDv(Pv,a " Pv,a) (6.28)

- In order to check the droplet parameter section of the code, the

_ling and evaporation of a I _ droplet was simulated. The droplet

was given an initial temperature of 20°C in an ambient saturate.J '-

atmosphere of O°C. The two cases of a stationary, unventi lated drop
%

and a freely-falling, ventilated drop were simulated. The results

are shown in Figures 6.4 and 6.5. The ventilated drop is seen to

equilibrate in several seconds, while the unventilated drop requires
t
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several tens of seconds. This is generally consistent with the

experimental results of Kinzer and Gunn,67 who found that a i.35 mm

+ drop cooling 7.5°C in subsaturated air took 4.4 seconds to equilibrate.

+' There Is, therefore, some confidence that the code reasonably

approximates the changes in droplet parameters, i

6.3 Simulation Results I+

In Figure 6.6, droplet temperature Is p;ui.L=d versus distance !
+
t

ahead of a 20-cm-thick half-body, for droplets impinging along the i

o stagnation streamline. In this simulation, tP_ewavelength ). was I
+

I cm, the maximum field strength E0 was 7.5 kV/cm, the exponentlation !

length of the field l was lO cm, and the free-stream veloci,'.y was I

60 m/sac. Droplets of 20, 40, i00 and 1000 micron diameters are

seen to heat from the ambient temperature of -20°C to values greater than

O°C upon impact. It should be noted that al1 the thermodynamic losses

such as evaporatlor and diffusion have been included and that the

maximumelectric field Is one-half of the air breakdown value of

68
15 kVtcm. It is clear, therefore, that for the above c_ndltions

droplets can be heated to above freezing before Impacting the airfoil. +

Further inspection of Figure 6.6 shows that the smallest drop ' i'

(20 microns) Is wanned the least. This is expected evcn though the _
: smaller droplets dwell somewhat longer In the high field retlon due to I ,

4

their low Inertia. This is due to the small drops being poor absorbers j ,,
t

by comparison to the larger drops. The trade-off between dwell time
!

and absorption cross-section is what causes the bunching of the 20, 40 1 '
!

and 100 micron temperatures in Fig_re 6.6, whil,-, for the IO00 micron !
+

dro_ the strong non-Rayleigh absorption effectc 1,wnlnate. +
t

i
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The effect of varying the electric field parameters Is shown for 20 " I

micron droplets impinging on the stagnation streamline. The 20 micron drop- !
; J

lets have been chosen as a worst-case design point, in that diameters less

than 20 m[cro,s were shown in Section 5.3 to have a low collection

efficiency and their heating is, therefore, less critical.

In Figure 6.7 the droplet temperature at impact is plotted versus

the maximum electric field strength for a wavelength of I cm and several

values of the exponentiation length, For field strengths above 2.5 kV

+ the final droplet temperature increases linearly with electric field

at a rate of approximately 4.2°C/kV. The exponentiation length is

seen to have a weak effect on the final droplet temperature, as the

most effective heating occurs close to the airfoil. Since the ability

to heat drops does not depend on long exponentiation lengths, then it +

Is clearly advantageous to keep the electric field closely bound to the

airfoil in order to minimize the heating of droplets which miss the

airfoil. _

In Ftgure 6.8, the droplet temperature at Impact is plotted against '-

wavelength for several values of the electric field and a lO-cm
i'

exponentlation length. The final temperature increases quickly with i

decreasing wavelength for _, less than 3 cm. Final temperatures at ._

freezing are obtainable for A less than 2 can.

The field strength required to heat droplets Is seen In Figur_ 6.7 ++ _+'
m

to have a maximum value on the order of 7.5 kV/cm near the airfoil ,+

surface with _, - I cm. The power flux for a plane wave of 7.5 kV/cm

can be calculated from the Poyntlng vector ' ,

c (6.29)

i

t ....... L+
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to be 74 kW/cm. This high peak power density lmplies large power flo_ In ..

the microwave circuit. While this high power is not lost from the system, ]
ias it recirculates, it creates power handling problems. It may therefore

be advantageous to keep the fields tightly bound and to operate at shorter

wavelengths where the maximumelectric fields are reduced, as is implied

by Figure 6.8. It should also be noted that the electromagnetic fields

are not necessarily plane waves and it may be possible to create a field
"r

structure which maximizes the electric field while minimizing the magnetic

field. This would reduce the circuit power flux from equation 6.29, while

still heating the droplets due to the non-magnetlc nature of water

droplet absorpt ion.

In Figures 6.9 and G.10, the effect of the ambient temperature and

the flow velocity are plotted for 20 micron and 100 micron droplets.

The maximumelectric field is 7.5 kV/cm with I - I canon a 10 cm

exponenciation length. In Figure 6.9 with a free-stream velocity of

60 m/sac, the final droplet temperature decreases with ambient

temperature, as would be expected. It is noted that the 20 micron :

drop impacts at above freezing, even for ambient temperatures of -30°C

and that the final temperature of the 100 micron drop averages

approximately /4° warmer than the 20 micron drop.

The effect of the free-stream velocity, at a fixed ambient tempera-

ture of -20°C, is shown in Figure 6.10. As expected, the high

velocities provide less time to heat the drops and their final

temperatures are correspondingly lower. The li°C to 5°C difference i

t between the 20 and i00 micron drops is again observed.

i
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FIGURE 6.10
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In Figure 6.11 the mass fraction is plotted versus distance ahead ,

of the body. The value of the electric field parameters Is the same

as above, and the free-stream velocity is 60 m/sec. The Initial value

of fw Is 0.1. The large (1000 micron) drop is totally me.lted by the

time It is within 6 cm of the body, while the smaller drops are still

partially frozen upon impact. This is not considered a problem, in

that most mix_d-phase particles in the atmosphere are precipitation

; particles wlth dimensions on the order of millimeters. _,

_ An example of droplets which impinge from positions other than

the stagnation streamline is shown in Figure 6.12. Droplet temperature :_

at the nose of the airfoil (x - Xs) Is plotted against initial separation

from the stagnation streamline. The droplet size Is 20 mi,-:-ons and

the reference angle B0 is 45°. The limit of the impingement window _

Is also shown. The plot is somewhat misleading, in that there will be

some additional heating for drops which impact behind the nose of the

airfoil and the final temperature also depends on diffusive losses. It is

clear, however, that the droplets which are heated the most are those
p

within the Impingement limit, and that by Judicious choice of the electric i

field the selective heating of only the impacting droplets could be

maximized.

In conclusion, a computer simulation has been made of droplets

being heated by microwave radiation as they Impinge onto an airfoil.

The simulation utilizes the results of the preceding chapters. The _

results indicate that It is Indeed feasible to heat droplets to above ; ._

freezing prior to impact under most Icing conditions. The effect of

various electromagnetic field and flow parameters on droplet heating
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= has been calculated, and the results are presented as an aid to the
4

!
design and analysis of anti-icing systen_ which might employ thei

techniques of microwave heating. The results indicate that wavelengths

less than 2 cm and maximumfield strengths greater than 7 kV/cm are

required to heat droplets to above freezing prior to impact. While the

i required field strength is high, it is less than the breakdown value of
|

', air, and the simulation indicates that the fields can be kept quite

closely bound to the airfoil with little degradation in performance.
i
,

!
i
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CHAPTER7
CONCLUSI 0NS

The primary goal of this thesis was to understand the physics

Involved in advanced microwave anti-icing systems and to determine

their feasibility in terms of the ability to heat supercooled water

droplets to above freezing prior to impact. Correspondingly, this

question was answered by means of a computer simulation in Chapter 6• _

The conclusion is that It is indeed possible to pre-heat water

droplets to above freezing under anticipated icing conditions, as long .'

as the maximumelectric field exceeds 7 kw/cm and the wavelength is :_

less than 2 cm. Detailed design curves for the electric field

; parameters are provided in Chapter 6.I; i
1 The work was successful in demonstrating its original goal, ]

tI.e. that supercooled water droplets can be heated to above freezing

ahead of the airfoil. In order to create the phys!cally-reallstic

simulation from which the above conclusions were drawn, some i "

preliminary work was necessary. The original techniques, methodology _ ,_:

and results which were developed are most likely as significant as _,

t i
the original goal• These results will be reviewed briefly by ,.

chapter. 1

In Chapter 3, a technique was developed to accurately measure

the absorption ¢ross-sectlon of a single droplet by its effect on

the Q of a lo_ loss resonant cavity Using this technique, the "'
;

theory of absorption by water-coated ice spheres of Aden and Kerker l,

was experimentally confirmed for the first time. In addition, an

b
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extension of the Aden and Kerker theory to melting of l rregularlt- I
1

. |
t

; shaped particles was made and confirmed experimentally. Finally, i

in Chapter 3, an extension of the resonant cavity technique allowed

the dielectric properties of supercooled water to be measured, at

_, - 2.82 cm, down to -17°C. This new data is shown in Figure 3.12.

; In Chapter 4, the hydrodynamics of accelerated water droplets

were observed in the wind tunnel by means of high-speed strobe

photography. The transient deformation limit of the major-to-minor

" axis ratio was experimentally cletermined for droplets suddenly

accelerated by another Fluid. The result is shown in Figure 4.9.

In addition, the theoretical prediction of Klett 45 as to the form of

: Raylelgh-Taylor instability in water droplets was unambiguously

conflmed as the First six Bessel Function instability modes were

identified photographically. This experimental evidence verifies

the theory of the maximumstable drop size In the atmosphere. The

unstable break-up of large water droplets causes *.he truncation at

approximately 5 mm observed in the atmospheric exponential droplet

size distribution of Harshall and Palmer.

In _hapter 5, a computer code was written to calculate droplet

trajectories, In any given flow field, and was experimentally

verified. The code Is useful in analyzing the susceptibility of i

airfoils to Icing and to analyzing new ice prevention concepts. With

the assistance of the code it was determined that, for cloud droplets, ',

the larger drops contribute appreciably more to Icing due to their

Increased collection efficiency and their Increased mass. In
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: dddition, the mechanism of the "double-horned" icing shapes resulting

from large splashing drop!ets was observed and modeled.

Finally, in Chapter 6 the above results were amalgamated int. a

computer simulation, where it was seen that it is indeed possfble to

heat droplets to above freezing, even when evaporative and convective

losses are included. From the design curves of Chapter 6, some

conclusions can be drawn as to the practical requirements of a

microwave antl-lcing system. In Figurp- 6.8 where the strong

influence of the wavelength on droplet heatirg is displayed, it is clear

that the minimal wavelength is optimal in terms of heating and that

a wavelength of less than 2 cm is required. Balancing the desira-

blllty of short wavelengths is the fact that microwave equipment costs

tend to Increase monotonically with decreasing wavelength. These

factors indicate that a practical ,_nti-iclng system would operate

with a wavelength of approximately I cm.

In Chapter 6, for X - 1 cm it was found that a relatively

hlgh field strength of _ roximately 7.5 kV was required to anti-ice

in all anticipated icing conditions. This fleld strength is one-half

the atmospheric breakdown limit. Even though the field sLrength was

required to be large, in the results of Chapter 6 It was found t:_t

it need not be extensive, as a tightly-boun" (.i_ - 10 an) surface '_:

wave was found to perform as well a_ a loosely-bound wave (_ = 40 cm). ;,

This resu" Indicates that it should be possible to be quite efflclert!

In only heating the impacting water droplet_. With the criteria for -:

droplet heatlng determined b_., the above results, the practlcality

of microwave anti-icing systems depend solely on engineering
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, efficiency c_nslderations and the ability of the microwave _ystem

- to be integrated with other systems, in a hybrid design, as discussed

In Chapter !, to solve the runback-refreeze p.,'nblem.

}

?

2

i
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. LIST OF SYMBOLS
i

i'i A drop major diameter

1

i A drop area perpendicular to the relative wind

A/B ellipsoid axis ratio

iI a sphere radius _i

a drop acceleration vector

'! magnetic and electric expansion coefficients of the _

an' bn scattered wave

B drop minor diameter

B magnetic field vector

_I incident magnetic field vector

Cd drag coefficient

C specific heat of water at constant pressure
P

c speed of light
!

O cylindrical cavity diameter

D equivolumetric sphere diameter
e:l

m.

D mean value of D
eq eq

r,v water vapor diffusion coefficient

electric Field vector
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_i Incident electric field vector "

E0 maximum electric field strength

Ez electric field strength in TMoI0 mode

e eccentricity of an ellipsoid

_0 polarization vector

F structure factor

f frequency

: fo cavi ty resonant frequency

fd Doppler frequency

f drop oscillation frequency of the nth moden

f mass fraction of water
W

C

"fh average heat ventilation coefficient

average vapor ventilation coefficientV

g, g' Gans factors

._ g acceleration due to gravity

H airfoil thickness

H_ magnetic field strength in TH010 mode

h body half thickness
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hI Impingement window height

th
J n BesseI function
n

K dielectric parameter

K constant in the droplet equation of motiona

wave vector

K thermal diffusion coefficient
a

; k gravitational wave number
g

_0 i,cldent wave vector

.t=

k scattered wave vector
S

L cavity length

Liw latent heat of fusion J

L latent heat of evaporationWV

exponential length of the electric f:eld

M drop mass

M. mass of Ice
I

I_ mass of water

dMc Impinging mass distribution

m complex refractive index
• i

1
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I

N number of scatterers

N Webber number
we

Nsc Schmldt number

• n mode number

n real part of the refractive ;ndex

t_ unit vector in the direction of propagation

P power

Pa ambient power

P, P' geometrical factors for ellipsoid

_: Pd power dissipated by a drop ,.

t

P power dissipated by the cavity wallsW

" Pmin' Pmax _inimum and maximum power received ,

Q quality facto•

:. Q heat

rate of change of heat

q change in wave vector

R ralnfa_l rate

Re Reynolds number

• radi al coordinate
'a
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r interpartlcle spacing

S surface function

Poynting vector

Sl incident Poyntlng vector

T tempera t ure

4

T ambient temperature
a :

T(t) cavi ty temperature

Td droplet temperature

t time

t o time melting begins

tf tin_ melting ends _.

U energy stored in the cavity -

U free stream velocity _ -

u fluid veloci ty

V droplet volume

Vre! relative wind velocity

_:.L

v droplet veloci ty '

. x, y, z Cartesian coordinates
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-= th

xj position of the j scatterer

x half body scale length

' _ 2Tra/),

• _ instability growth rate
?

O[ angle of attack

,., £ ful I width at half maximum

¢ complex dielectric constant

_ real part of

c" negative of the imaginary part of e

rlc airfoil collection efficiency

(_ angular coordi nate

, _

80 heating code reference angle 1:

k negative of the imaglr.-_y part of m

X wavelength _'

), Harshal 1-Palmer coefflclent

1J dynamic viscosity ._-

ellipsoid axis of revolution

_, rl, X ellipsoid coordinates
?
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! p densl ty
I ;
!

I ' Pi density of lce

Pw density of water

Pv density of water vapor ::

p, ¢, z cylindrical coordinates , .

a surfece tension
i;

0 CrOSS-Sect i on

! nb backscatter cross-sect ion

a absorption cross-section ,'

_s scattering cross-section

a t total cross-sect ion i

do dlffertial cross-section

2

¢ velocity potential function .)

solid angle

4

?
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